Simulate a neutral landscape model using the Gibbs algorithm introduced in Gaucherel (2008).
Arguments
- ncol
[
numerical(1)
]
Number of columns forming the raster.- nrow
[
numerical(1)
]
Number of rows forming the raster.- resolution
[
numerical(1)
]
Resolution of the raster.- germs
[
numerical(1)
]
Intensity parameter (non-negative integer).- R
[
numerical(1)
]
Interaction radius (non-negative integer) for the fitting of the spatial point pattern process - the min. distance between germs in map units.- patch_classes
[
numerical(1)
]
Number of classes for germs.- rescale
[
logical(1)
]
IfTRUE
(default), the values are rescaled between 0-1.
Details
nlm_mosaicgibbs
offers the second option of simulating a neutral landscape model
described in Gaucherel (2008).
The method works in principal like the tessellation method (nlm_mosaictess
),
but instead of a random point pattern the algorithm fits a simulated realization of the Strauss
process. The Strauss process starts with a given number of points and
uses a minimization approach to fit a point pattern with a given interaction
parameter (0 - hardcore process; 1 - Poisson process) and interaction radius
(distance of points/germs being apart).
References
Gaucherel, C. (2008) Neutral models for polygonal landscapes with linear networks. Ecological Modelling, 219, 39 - 48.
Examples
# simulate polygonal landscapes
mosaicgibbs <- nlm_mosaicgibbs(ncol = 40,
nrow = 30,
germs = 20,
R = 0.02,
patch_classes = 12)
if (FALSE) {
# visualize the NLM
landscapetools::show_landscape(mosaicgibbs)
}