Simulates a random cluster nearest-neighbour neutral landscape.
Usage
nlm_randomcluster(
ncol,
nrow,
resolution = 1,
p,
ai = c(0.5, 0.5),
neighbourhood = 4,
rescale = TRUE
)
Arguments
- ncol
[
integer(1)
]
Number of columns forming the raster.- nrow
[
integer(1)
]
Number of rows forming the raster.- resolution
[
numerical(1)
]
Resolution of the raster.- p
[
numerical(1)
]
Defines the proportion of elements randomly selected to form clusters.- ai
Vector with the cluster type distribution (percentages of occupancy). This directly controls the number of types via the given length.
- neighbourhood
[
numerical(1)
]
Clusters are defined using a set of neighbourhood structures, 4 (Rook's or von Neumann neighbourhood) (default), 8 (Queen's or Moore neighbourhood).- rescale
[
logical(1)
]
IfTRUE
(default), the values are rescaled between 0-1.
Details
This is a direct implementation of steps A - D of the modified random clusters algorithm by Saura & Martínez-Millán (2000), which creates naturalistic patchy patterns.
References
Saura, S. & Martínez-Millán, J. (2000) Landscape patterns simulation with a modified random clusters method. Landscape Ecology, 15, 661 – 678.
Examples
# simulate random clustering
random_cluster <- nlm_randomcluster(ncol = 30, nrow = 30,
p = 0.4,
ai = c(0.25, 0.25, 0.5))
#> Loading required namespace: igraph
if (FALSE) {
# visualize the NLM
landscapetools::show_landscape(random_cluster)
}