Skip to contents

Each column in the source dataset must be assigned to a particular ft_xx depending on the type of data that it contains. This is done through a field_types() specification.

Usage

ft_timepoint(includes_time = TRUE, format = "", na = NULL)

ft_uniqueidentifier(na = NULL)

ft_categorical(aggregate_by_each_category = FALSE, na = NULL)

ft_numeric(na = NULL)

ft_datetime(includes_time = TRUE, format = "", na = NULL)

ft_freetext(na = NULL)

ft_simple(na = NULL)

ft_strata(na = NULL)

ft_ignore()

Arguments

includes_time

If TRUE, additional aggregated values will be generated using the time portion (and if no time portion is present then midnight will be assumed). If FALSE, aggregated values will ignore any time portion. Default = TRUE

format

Where datetime values are not in the format YYYY-MM-DD or YYYY-MM-DD HH:MM:SS, an alternative format can be specified at the per field level, using readr::col_datetime() format specifications, e.g. format = "%d/%m/%Y". When a format is supplied, it must match the complete string.

na

Column-specific vector of strings that should be interpreted as missing values (in addition to those specified at dataset level)

aggregate_by_each_category

If TRUE, aggregated values will be generated for each distinct subcategory as well as for the field overall. If FALSE, aggregated values will only be generated for the field overall. Default = FALSE

Value

A field_type object denoting the type of data in the column

Details

ft_timepoint() - identifies the data field which should be used as the independent time variable. There should be one and only one of these specified.

ft_uniqueidentifier() - identifies data fields which contain a (usually computer-generated) identifier for an entity, e.g. a patient. It does not need to be unique within the dataset.

ft_categorical() - identifies data fields which should be treated as categorical.

ft_numeric() - identifies data fields which contain numeric values that should be treated as continuous. Any values which contain non-numeric characters (including grouping marks) will be classed as non-conformant

ft_datetime() - identifies data fields which contain date values that should be treated as continuous.

ft_freetext() - identifies data fields which contain free text values. Only presence/missingness will be evaluated.

ft_simple() - identifies data fields where you only want presence/missingness to be evaluated (but which are not necessarily free text).

ft_strata() - identifies a categorical data field which should be used to stratify the rest of the data.

ft_ignore() - identifies data fields which should be ignored. These will not be loaded.

Examples

fts <- field_types(
  PatientID = ft_uniqueidentifier(),
  TestID = ft_ignore(),
  TestDate = ft_timepoint(),
  TestName = ft_categorical(aggregate_by_each_category = FALSE),
  TestResult = ft_numeric(),
  ResultDate = ft_datetime(),
  ResultComment = ft_freetext(),
  Location = ft_categorical()
)

ft_simple()
#> $type
#> [1] "simple"
#> 
#> $collector
#> <collector_character>
#> 
#> $data_class
#> [1] "character"
#> 
#> $aggregation_functions
#> [1] "n"            "missing_n"    "missing_perc"
#> 
#> $na
#> NULL
#> 
#> $options
#> NULL
#> 
#> attr(,"class")
#> [1] "daiquiri_field_type_simple" "daiquiri_field_type"