Convert many input types with spatial data to geojson specified as a json string
Source:R/geojson_json.R
geojson_json.Rd
Convert many input types with spatial data to geojson specified as a json string
Usage
geojson_json(
input,
lat = NULL,
lon = NULL,
group = NULL,
geometry = "point",
type = "FeatureCollection",
convert_wgs84 = FALSE,
crs = NULL,
precision = NULL,
...
)
Arguments
- input
Input list, data.frame, spatial class, or sf class. Inputs can also be dplyr
tbl_df
class since it inherits fromdata.frame
.- lat
(character) Latitude name. The default is
NULL
, and we attempt to guess.- lon
(character) Longitude name. The default is
NULL
, and we attempt to guess.- group
(character) A grouping variable to perform grouping for polygons - doesn't apply for points
- geometry
(character) One of point (Default) or polygon.
- type
(character) The type of collection. One of 'auto' (default for 'sf' objects), 'FeatureCollection' (default for everything else), or 'GeometryCollection'. "skip" skips the coercion with package geojson functions; skipping can save significant run time on larger geojson objects.
Spatial
objects can only accept "FeatureCollection" or "skip". "skip" is not available as an option fornumeric
,list
, anddata.frame
classes- convert_wgs84
Should the input be converted to the standard CRS system for GeoJSON (https://tools.ietf.org/html/rfc7946) (geographic coordinate reference system, using the WGS84 datum, with longitude and latitude units of decimal degrees; EPSG: 4326). Default is
FALSE
though this may change in a future package version. This will only work forsf
orSpatial
objects with a CRS already defined. If one is not defined but you know what it is, you may define it in thecrs
argument below.- crs
The CRS of the input if it is not already defined. This can be an epsg code as a four or five digit integer or a valid proj4 string. This argument will be ignored if
convert_wgs84
isFALSE
or the object already has a CRS.- precision
(integer) desired number of decimal places for coordinates. Using fewer decimal places decreases object sizes (at the cost of precision). This changes the underlying precision stored in the data.
options(digits = <some number>)
changes the maximum number of digits displayed (to find out what yours is set at seegetOption("digits")
); the value of this parameter will change what's displayed in your console up to the value ofgetOption("digits")
. See Precision section for more.- ...
Further args passed on to internal functions. For Spatial* classes, it is passed through to
sf::st_write()
. For sf classes, data.frames, lists, numerics, and geo_lists, it is passed through tojsonlite::toJSON()
Details
This function creates a geojson structure as a json character
string; it does not write a file - see geojson_write()
for that
Note that all sp class objects will output as FeatureCollection
objects, while other classes (numeric, list, data.frame) can be output as
FeatureCollection
or GeometryCollection
objects. We're working
on allowing GeometryCollection
option for sp class objects.
Also note that with sp classes we do make a round-trip, using
sf::st_write()
to write GeoJSON to disk, then read it back
in. This is fast and we don't have to think about it too much, but this
disk round-trip is not ideal.
For sf classes (sf, sfc, sfg), the following conversions are made:
sfg: the appropriate geometry
Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection
sfc:
GeometryCollection
, unless the sfc is length 1, then the geometry as abovesf:
FeatureCollection
Precision
Precision is handled in different ways depending on the class.
The digits
parameter of jsonlite::toJSON
controls precision for classes
numeric
, list
, data.frame
, and geo_list
.
For sp
classes, precision is controlled by sf::st_write
, being passed
down through geojson_write()
, then through internal function
write_geojson()
, then another internal function write_ogr_sf()
For sf
classes, precision isn't quite working yet.
Examples
if (FALSE) { # \dontrun{
# From a numeric vector of length 2, making a point type
geojson_json(c(-99.74134244, 32.451323223))
geojson_json(c(-99.74134244, 32.451323223))[[1]]
geojson_json(c(-99.74134244, 32.451323223), precision = 2)[[1]]
geojson_json(c(-99.74, 32.45), type = "GeometryCollection")
## polygon type
### this requires numeric class input, so inputting a list will dispatch
### on the list method
poly <- c(
c(-114.345703125, 39.436192999314095),
c(-114.345703125, 43.45291889355468),
c(-106.61132812499999, 43.45291889355468),
c(-106.61132812499999, 39.436192999314095),
c(-114.345703125, 39.436192999314095)
)
geojson_json(poly, geometry = "polygon")
# Lists
## From a list of numeric vectors to a polygon
vecs <- list(
c(100.0, 0.0), c(101.0, 0.0), c(101.0, 1.0), c(100.0, 1.0),
c(100.0, 0.0)
)
geojson_json(vecs, geometry = "polygon")
## from a named list
mylist <- list(
list(latitude = 30, longitude = 120, marker = "red"),
list(latitude = 30, longitude = 130, marker = "blue")
)
geojson_json(mylist, lat = "latitude", lon = "longitude")
# From a data.frame to points
geojson_json(us_cities[1:2, ], lat = "lat", lon = "long")
geojson_json(us_cities[1:2, ],
lat = "lat", lon = "long",
type = "GeometryCollection"
)
# from data.frame to polygons
head(states)
## make list for input to e.g., rMaps
geojson_json(states[1:351, ],
lat = "lat", lon = "long", geometry = "polygon",
group = "group"
)
# from a geo_list
a <- geojson_list(us_cities[1:2, ], lat = "lat", lon = "long")
geojson_json(a)
# sp classes
## From SpatialPolygons class
library("sp")
poly1 <- Polygons(list(Polygon(cbind(
c(-100, -90, -85, -100),
c(40, 50, 45, 40)
))), "1")
poly2 <- Polygons(list(Polygon(cbind(
c(-90, -80, -75, -90),
c(30, 40, 35, 30)
))), "2")
sp_poly <- SpatialPolygons(list(poly1, poly2), 1:2)
geojson_json(sp_poly)
## data.frame to geojson
geojson_write(us_cities[1:2, ], lat = "lat", lon = "long") %>% as.json()
# From SpatialPoints class
x <- c(1, 2, 3, 4, 5)
y <- c(3, 2, 5, 1, 4)
s <- SpatialPoints(cbind(x, y))
geojson_json(s)
## From SpatialPointsDataFrame class
s <- SpatialPointsDataFrame(cbind(x, y), mtcars[1:5, ])
geojson_json(s)
## From SpatialLines class
library("sp")
c1 <- cbind(c(1, 2, 3), c(3, 2, 2))
c2 <- cbind(c1[, 1] + .05, c1[, 2] + .05)
c3 <- cbind(c(1, 2, 3), c(1, 1.5, 1))
L1 <- Line(c1)
L2 <- Line(c2)
L3 <- Line(c3)
Ls1 <- Lines(list(L1), ID = "a")
Ls2 <- Lines(list(L2, L3), ID = "b")
sl1 <- SpatialLines(list(Ls1))
sl12 <- SpatialLines(list(Ls1, Ls2))
geojson_json(sl1)
geojson_json(sl12)
## From SpatialLinesDataFrame class
dat <- data.frame(
X = c("Blue", "Green"),
Y = c("Train", "Plane"),
Z = c("Road", "River"), row.names = c("a", "b")
)
sldf <- SpatialLinesDataFrame(sl12, dat)
geojson_json(sldf)
geojson_json(sldf)
## From SpatialGrid
x <- GridTopology(c(0, 0), c(1, 1), c(5, 5))
y <- SpatialGrid(x)
geojson_json(y)
## From SpatialGridDataFrame
sgdim <- c(3, 4)
sg <- SpatialGrid(GridTopology(rep(0, 2), rep(10, 2), sgdim))
sgdf <- SpatialGridDataFrame(sg, data.frame(val = 1:12))
geojson_json(sgdf)
# From SpatialPixels
library("sp")
pixels <- suppressWarnings(
SpatialPixels(SpatialPoints(us_cities[c("long", "lat")]))
)
summary(pixels)
geojson_json(pixels)
# From SpatialPixelsDataFrame
library("sp")
pixelsdf <- suppressWarnings(
SpatialPixelsDataFrame(
points = canada_cities[c("long", "lat")],
data = canada_cities
)
)
geojson_json(pixelsdf)
# From sf classes:
if (require(sf)) {
## sfg (a single simple features geometry)
p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
poly <- rbind(c(1, 1), c(1, 2), c(2, 2), c(1, 1))
poly_sfg <- st_polygon(list(p1))
geojson_json(poly_sfg)
## sfc (a collection of geometries)
p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
p2 <- rbind(c(5, 5), c(5, 6), c(4, 5), c(5, 5))
poly_sfc <- st_sfc(st_polygon(list(p1)), st_polygon(list(p2)))
geojson_json(poly_sfc)
## sf (collection of geometries with attributes)
p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
p2 <- rbind(c(5, 5), c(5, 6), c(4, 5), c(5, 5))
poly_sfc <- st_sfc(st_polygon(list(p1)), st_polygon(list(p2)))
poly_sf <- st_sf(foo = c("a", "b"), bar = 1:2, poly_sfc)
geojson_json(poly_sf)
}
## Pretty print a json string
geojson_json(c(-99.74, 32.45))
geojson_json(c(-99.74, 32.45)) %>% pretty()
# skipping the pretty geojson class coercion with the geojson pkg
if (require(sf)) {
library(sf)
p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
p2 <- rbind(c(5, 5), c(5, 6), c(4, 5), c(5, 5))
poly_sfc <- st_sfc(st_polygon(list(p1)), st_polygon(list(p2)))
geojson_json(poly_sfc)
geojson_json(poly_sfc, type = "skip")
}
} # }