Analyse text for entities, sentiment, syntax and classification using the Google Natural Language API.
Usage
gl_nlp(
string,
nlp_type = c("annotateText", "analyzeEntities", "analyzeSentiment", "analyzeSyntax",
"analyzeEntitySentiment", "classifyText"),
type = c("PLAIN_TEXT", "HTML"),
language = c("en", "zh", "zh-Hant", "fr", "de", "it", "ja", "ko", "pt", "es"),
encodingType = c("UTF8", "UTF16", "UTF32", "NONE")
)
Arguments
- string
Character vector. Text to analyse or Google Cloud Storage URI(s) in the form
gs://bucket_name/object_name
.- nlp_type
Character. Type of analysis to perform. Default
annotateText
performs all features in a single call. Options include:analyzeEntities
,analyzeSentiment
,analyzeSyntax
,analyzeEntitySentiment
,classifyText
.- type
Character. Whether the input is plain text (
PLAIN_TEXT
) or HTML (HTML
).- language
Character. Language of the source text. Must be supported by the API.
- encodingType
Character. Text encoding used to process the output. Default
UTF8
.
Value
A list containing the requested components as specified by nlp_type
:
- sentences
Sentences in the input document. API reference.
- tokens
Tokens with syntactic information. API reference.
- entities
Entities with semantic information. API reference.
- documentSentiment
Overall sentiment of the document. API reference.
- classifyText
Document classification. API reference.
- language
Detected language of the text, or the language specified in the request.
- text
Original text passed to the API. Returns
NA
if input is empty.
Details
Encoding type can usually be left at the default UTF8
.
Further details on encoding types.
Current language support is listed here.
Examples
if (FALSE) { # \dontrun{
library(googleLanguageR)
text <- "To administer medicine to animals is frequently difficult, yet sometimes necessary."
nlp <- gl_nlp(text)
nlp$sentences
nlp$tokens
nlp$entities
nlp$documentSentiment
# Vectorised input
texts <- c("The cat sat on the mat.", "Oh no, it did not, you fool!")
nlp_results <- gl_nlp(texts)
} # }