This function calculates the AUC for cure prediction using the mean score imputation (MSI) method proposed by Asano et al (2014).
Arguments
- object
a
mixturecureobject resulting fromcuregmifs,cureem,cv_curegmifs, orcv_cureem.- newdata
an optional data.frame that minimally includes the incidence and/or latency variables to use for predicting the response. If omitted, the training data are used.
- cure_cutoff
cutoff value for cure, used to produce a proxy for the unobserved cure status (default is 5 representing 5 years). Users should be careful to note the time scale of their data and adjust this according to the time scale and clinical application.
- model_select
either a case-sensitive parameter for models fit using
curegmifsorcureemor any numeric step along the solution path can be selected. The default ismodel_select = "AIC"which calculates the predicted values using the coefficients from the model achieving the minimum AIC. The complete list of options are:"AIC"for the minimum AIC (default)."mAIC"for the minimum modified AIC."cAIC"for the minimum corrected AIC."BIC", for the minimum BIC."mBIC"for the minimum modified BIC."EBIC"for the minimum extended BIC."logLik"for the step that maximizes the log-likelihood.nwhere n is any numeric value from the solution path.
This option has no effect for objects fit using
cv_curegmifsorcv_cureem.
References
Asano, J., Hirakawa, H., Hamada, C. (2014) Assessing the prediction accuracy of cure in the Cox proportional hazards cure model: an application to breast cancer data. Pharmaceutical Statistics, 13:357–363.
Examples
library(survival)
withr::local_seed(1234)
temp <- generate_cure_data(n = 100, j = 10, n_true = 10, a = 1.8)
training <- temp$training
testing <- temp$testing
fit <- curegmifs(Surv(Time, Censor) ~ .,
data = training, x_latency = training,
model = "weibull", thresh = 1e-4, maxit = 2000,
epsilon = 0.01, verbose = FALSE
)
auc_mcm(fit, model_select = "cAIC")
#> [1] 0.8141595
auc_mcm(fit, newdata = testing)
#> [1] 0.7030401
