coef.mixturecure is a generic function which extracts the model
coefficients from a fitted mixturecure model object fit using
curegmifs, cureem, cv_curegmifs, or cv_cureem.
Usage
# S3 method for class 'mixturecure'
coef(object, model_select = "AIC", ...)Arguments
- object
a
mixturecureobject resulting fromcuregmifs,cureem,cv_curegmifs, orcv_cureem.- model_select
either a case-sensitive parameter for models fit using
curegmifsorcureemor any numeric step along the solution path can be selected. The default ismodel_select = "AIC"which calculates the predicted values using the coefficients from the model achieving the minimum AIC. The complete list of options are:"AIC"for the minimum AIC (default)."mAIC"for the minimum modified AIC."cAIC"for the minimum corrected AIC."BIC", for the minimum BIC."mBIC"for the minimum modified BIC."EBIC"for the minimum extended BIC."logLik"for the step that maximizes the log-likelihood.nwhere n is any numeric value from the solution path.
This option has no effect for objects fit using
cv_curegmifsorcv_cureem.- ...
other arguments.
Value
- rate
estimated rate parameter when fitting a Weibull or exponential mixture cure model.
- shape
estimated shape parameter when fitting a Weibull mixture cure model.
- b0
estimated intercept for the incidence portion of the mixture cure model.
- beta_inc
the vector of coefficient estimates for the incidence portion of the mixture cure model.
- beta_lat
the vector of coefficient estimates for the latency portion of the mixture cure model.
- p_uncured
a vector of probabilities from the incidence portion of the fitted model representing the P(uncured).
Examples
library(survival)
withr::local_seed(1234)
temp <- generate_cure_data(n = 100, j = 10, n_true = 10, a = 1.8)
training <- temp$training
fit <- curegmifs(Surv(Time, Censor) ~ .,
data = training, x_latency = training,
model = "weibull", thresh = 1e-4, maxit = 2000,
epsilon = 0.01, verbose = FALSE
)
coef(fit)
#> $rate
#> [1] 3.584565
#>
#> $shape
#> [1] 1.197495
#>
#> $b0
#> [1] 0.3670091
#>
#> $beta_inc
#> U1 U2 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
#> 0.00 0.07 1.46 -1.23 1.22 -1.33 0.04 -1.37 -0.90 0.36 -0.07 1.77
#>
#> $beta_lat
#> U1 U2 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
#> 0.37 0.34 1.24 1.07 0.39 1.11 -0.84 0.04 0.71 0.38 -0.45 -1.20
#>
