This function returns the log-likelihood for a user-specified model criterion
or step for a curegmifs, cureem,
cv_curegmifs or cv_cureem fitted object.
Usage
# S3 method for class 'mixturecure'
logLik(object, model_select = "AIC", ...)Arguments
- object
a
mixturecureobject resulting fromcuregmifs,cureem,cv_curegmifs,cv_cureem.- model_select
either a case-sensitive parameter for models fit using
curegmifsorcureemor any numeric step along the solution path can be selected. The default ismodel_select = "AIC"which calculates the predicted values using the coefficients from the model achieving the minimum AIC. The complete list of options are:"AIC"for the minimum AIC (default)."mAIC"for the minimum modified AIC."cAIC"for the minimum corrected AIC."BIC", for the minimum BIC."mBIC"for the minimum modified BIC."EBIC"for the minimum extended BIC."logLik"for the step that maximizes the log-likelihood.nwhere n is any numeric value from the solution path.
This option has no effect for objects fit using
cv_curegmifsorcv_cureem.- ...
other arguments.
Examples
library(survival)
withr::local_seed(1234)
temp <- generate_cure_data(n = 100, j = 10, n_true = 10, a = 1.8)
training <- temp$training
fit <- curegmifs(Surv(Time, Censor) ~ .,
data = training, x_latency = training,
model = "weibull", thresh = 1e-4, maxit = 2000,
epsilon = 0.01, verbose = FALSE
)
logLik(fit, model_select = "AIC")
#> 'log Lik.' -9.228931 (df=26)
