Skip to contents

Tidy tools for 'NetCDF' data sources. Explore the contents of a 'NetCDF' source (file or URL) presented as variables organized by grid with a database-like interface. The hyper_filter() interactive function translates the filter value or index expressions to array-slicing form. No data is read until explicitly requested, as a data frame or list of arrays via hyper_tibble() or hyper_array().

Provides easy to use idioms for working with NetCDF data for extraction, manipulation and visualization. NetCDF is Network Common Data Form https://www.unidata.ucar.edu/software/netcdf/.

Details

See print.tidync() for details on the printed version of a tidync object.

There is a family of functions "hyper_verb" around exploring and extracting data.

activereport the currently active grid
activateactive a grid
tidynccore NetCDF source object for tidync functions
hyper_filterapply dimension expressions to specify array slices
hyper_arrayextracts a raw data array based on a NetCDF index
hyper_tbl_cubeextracts data as a dplyr tbl_cube
hyper_tibbleextracts data as a data frame with all dimension values
hyper_transformsextract the active (or all) dimension transforms
hyper_varsinformation on active variables
hyper_dimsinformation on active dimensions
hyper_gridsinformation on grids

The scheme generally processes dimension filters into NetCDF extraction indexes and these are always available to each function, and are expressed in printed output.

The following options are available.

tidync.large.data.check = TRUE/FALSEcheck for large data extraction (default TRUE)
tidync.silent = FALSE/TRUEemit warnings,messages or be silent (default FALSE)

Author

Maintainer: Michael Sumner mdsumner@gmail.com

Other contributors:

  • Simon Wotherspoon [contributor]

  • Tomas Remenyi [contributor]

  • Ben Raymond [contributor]

  • Jakub Nowosad [contributor]

  • Tim Lucas [contributor]

  • Hadley Wickham [contributor]

  • Adrian Odenweller [contributor]

  • Patrick Van Laake [contributor]

  • Fabian Bernhard [contributor]

Examples

argofile <- system.file("extdata/argo/MD5903593_001.nc", package = "tidync")
argo <- tidync(argofile)
argo %>% active()
#> [1] "D10,D8"
argo %>% activate("D3,D8") %>% hyper_array()
#> Class: tidync_data (list of tidync data arrays)
#> Variables (2): 'PLATFORM_NUMBER', 'POSITIONING_SYSTEM'
#> Dimension (1): STRING8,N_PROF (2)
#> Source: /usr/local/lib/R/site-library/tidync/extdata/argo/MD5903593_001.nc
argo %>% hyper_filter(N_LEVELS = index < 4)
#> 
#> Data Source (1): MD5903593_001.nc ...
#> 
#> Grids (16) <dimension family> : <associated variables> 
#> 
#> [1]   D0,D9,D11,D8 : SCIENTIFIC_CALIB_DATE
#> [2]   D6,D9,D11,D8 : PARAMETER
#> [3]   D7,D9,D11,D8 : SCIENTIFIC_CALIB_EQUATION, SCIENTIFIC_CALIB_COEFFICIENT, SCIENTIFIC_CALIB_COMMENT
#> [4]   D6,D9,D8     : STATION_PARAMETERS
#> [5]   D10,D8       : PRES, PRES_QC, PRES_ADJUSTED, PRES_ADJUSTED_QC, PRES_ADJUSTED_ERROR, TEMP, TEMP_QC, TEMP_ADJUSTED, TEMP_ADJUSTED_QC, TEMP_ADJUSTED_ERROR, PSAL, PSAL_QC, PSAL_ADJUSTED, PSAL_ADJUSTED_QC, PSAL_ADJUSTED_ERROR, DOXY, DOXY_QC, DOXY_ADJUSTED, DOXY_ADJUSTED_QC, DOXY_ADJUSTED_ERROR, CHLA, CHLA_QC, CHLA_ADJUSTED, CHLA_ADJUSTED_QC, CHLA_ADJUSTED_ERROR, BBP700, BBP700_QC, BBP700_ADJUSTED, BBP700_ADJUSTED_QC, BBP700_ADJUSTED_ERROR, NITRATE, NITRATE_QC, NITRATE_ADJUSTED, NITRATE_ADJUSTED_QC, NITRATE_ADJUSTED_ERROR    **ACTIVE GRID** ( 986  values per variable)
#> [6]   D1,D8        : DATA_CENTRE
#> [7]   D2,D8        : DATA_STATE_INDICATOR, WMO_INST_TYPE
#> [8]   D3,D8        : PLATFORM_NUMBER, POSITIONING_SYSTEM
#> [9]   D5,D8        : DC_REFERENCE, PLATFORM_TYPE, FLOAT_SERIAL_NO, FIRMWARE_VERSION
#> [10]   D6,D8        : PROJECT_NAME, PI_NAME
#> [11]   D7,D8        : VERTICAL_SAMPLING_SCHEME
#> [12]   D9,D8        : PARAMETER_DATA_MODE
#> [13]   D0           : REFERENCE_DATE_TIME, DATE_CREATION, DATE_UPDATE
#> [14]   D2           : FORMAT_VERSION, HANDBOOK_VERSION
#> [15]   D5           : DATA_TYPE
#> [16]   D8           : CYCLE_NUMBER, DIRECTION, DATA_MODE, JULD, JULD_QC, JULD_LOCATION, LATITUDE, LONGITUDE, POSITION_QC, CONFIG_MISSION_NUMBER, PROFILE_PRES_QC, PROFILE_TEMP_QC, PROFILE_PSAL_QC, PROFILE_DOXY_QC, PROFILE_CHLA_QC, PROFILE_BBP700_QC, PROFILE_NITRATE_QC
#> 
#> Dimensions 14 (2 active): 
#>   
#>   dim   name     length   min   max start count  dmin  dmax unlim coord_dim 
#>   <chr> <chr>     <dbl> <dbl> <dbl> <int> <int> <dbl> <dbl> <lgl> <lgl>     
#> 1 D8    N_PROF        2     1     2     1     2     1     2 FALSE FALSE     
#> 2 D10   N_LEVELS    493     1   493     1     3     1     3 FALSE FALSE     
#>   
#> Inactive dimensions:
#>   
#>    dim   name       length   min   max unlim coord_dim 
#>    <chr> <chr>       <dbl> <dbl> <dbl> <lgl> <lgl>     
#>  1 D0    DATE_TIME      14     1    14 FALSE FALSE     
#>  2 D1    STRING2         2     1     2 FALSE FALSE     
#>  3 D2    STRING4         4     1     4 FALSE FALSE     
#>  4 D3    STRING8         8     1     8 FALSE FALSE     
#>  5 D4    STRING16       16    NA    NA FALSE FALSE     
#>  6 D5    STRING32       32     1    32 FALSE FALSE     
#>  7 D6    STRING64       64     1    64 FALSE FALSE     
#>  8 D7    STRING256     256     1   256 FALSE FALSE     
#>  9 D9    N_PARAM         7     1     7 FALSE FALSE     
#> 10 D11   N_CALIB         1     1     1 FALSE FALSE     
#> 11 D12   N_HISTORY       0    NA    NA TRUE  FALSE     
#> 12 D13   N_VALUES41     41    NA    NA FALSE FALSE     
argo %>% hyper_tbl_cube()
#> Source: local array [986 x 2]
#> D: N_LEVELS [int, 493]
#> D: N_PROF [int, 2]
#> M: PRES [dbl[,2]]
#> M: PRES_QC [chr[,2]]
#> M: PRES_ADJUSTED [dbl[,2]]
#> M: PRES_ADJUSTED_QC [chr[,2]]
#> M: PRES_ADJUSTED_ERROR [dbl[,2]]
#> M: TEMP [dbl[,2]]
#> M: TEMP_QC [chr[,2]]
#> M: TEMP_ADJUSTED [dbl[,2]]
#> M: TEMP_ADJUSTED_QC [chr[,2]]
#> M: TEMP_ADJUSTED_ERROR [dbl[,2]]
#> M: PSAL [dbl[,2]]
#> M: PSAL_QC [chr[,2]]
#> M: PSAL_ADJUSTED [dbl[,2]]
#> M: PSAL_ADJUSTED_QC [chr[,2]]
#> M: PSAL_ADJUSTED_ERROR [dbl[,2]]
#> M: DOXY [dbl[,2]]
#> M: DOXY_QC [chr[,2]]
#> M: DOXY_ADJUSTED [dbl[,2]]
#> M: DOXY_ADJUSTED_QC [chr[,2]]
#> M: DOXY_ADJUSTED_ERROR [dbl[,2]]
#> M: CHLA [dbl[,2]]
#> M: CHLA_QC [chr[,2]]
#> M: CHLA_ADJUSTED [dbl[,2]]
#> M: CHLA_ADJUSTED_QC [chr[,2]]
#> M: CHLA_ADJUSTED_ERROR [dbl[,2]]
#> M: BBP700 [dbl[,2]]
#> M: BBP700_QC [chr[,2]]
#> M: BBP700_ADJUSTED [dbl[,2]]
#> M: BBP700_ADJUSTED_QC [chr[,2]]
#> M: BBP700_ADJUSTED_ERROR [dbl[,2]]
#> M: NITRATE [dbl[,2]]
#> M: NITRATE_QC [chr[,2]]
#> M: NITRATE_ADJUSTED [dbl[,2]]
#> M: NITRATE_ADJUSTED_QC [chr[,2]]
#> M: NITRATE_ADJUSTED_ERROR [dbl[,2]]
argo %>% hyper_tibble(select_var = c("TEMP_QC"))
#> # A tibble: 986 × 3
#>    TEMP_QC N_LEVELS N_PROF
#>    <chr>   <chr>    <chr> 
#>  1 1       1        1     
#>  2 1       2        1     
#>  3 1       3        1     
#>  4 1       4        1     
#>  5 1       5        1     
#>  6 1       6        1     
#>  7 1       7        1     
#>  8 1       8        1     
#>  9 1       9        1     
#> 10 1       10       1     
#> # ℹ 976 more rows
argo %>% hyper_transforms()
#> $N_LEVELS
#> # A tibble: 493 × 6
#>    N_LEVELS index    id name     coord_dim selected
#>       <int> <int> <int> <chr>    <lgl>     <lgl>   
#>  1        1     1    10 N_LEVELS FALSE     TRUE    
#>  2        2     2    10 N_LEVELS FALSE     TRUE    
#>  3        3     3    10 N_LEVELS FALSE     TRUE    
#>  4        4     4    10 N_LEVELS FALSE     TRUE    
#>  5        5     5    10 N_LEVELS FALSE     TRUE    
#>  6        6     6    10 N_LEVELS FALSE     TRUE    
#>  7        7     7    10 N_LEVELS FALSE     TRUE    
#>  8        8     8    10 N_LEVELS FALSE     TRUE    
#>  9        9     9    10 N_LEVELS FALSE     TRUE    
#> 10       10    10    10 N_LEVELS FALSE     TRUE    
#> # ℹ 483 more rows
#> 
#> $N_PROF
#> # A tibble: 2 × 6
#>   N_PROF index    id name   coord_dim selected
#>    <int> <int> <int> <chr>  <lgl>     <lgl>   
#> 1      1     1     8 N_PROF FALSE     TRUE    
#> 2      2     2     8 N_PROF FALSE     TRUE    
#> 
argo %>% hyper_vars()
#> # A tibble: 35 × 6
#>       id name                type     ndims natts dim_coord
#>    <int> <chr>               <chr>    <int> <int> <lgl>    
#>  1    37 PRES                NC_FLOAT     2    10 FALSE    
#>  2    38 PRES_QC             NC_CHAR      2     3 FALSE    
#>  3    39 PRES_ADJUSTED       NC_FLOAT     2     9 FALSE    
#>  4    40 PRES_ADJUSTED_QC    NC_CHAR      2     3 FALSE    
#>  5    41 PRES_ADJUSTED_ERROR NC_FLOAT     2     6 FALSE    
#>  6    42 TEMP                NC_FLOAT     2     9 FALSE    
#>  7    43 TEMP_QC             NC_CHAR      2     3 FALSE    
#>  8    44 TEMP_ADJUSTED       NC_FLOAT     2     9 FALSE    
#>  9    45 TEMP_ADJUSTED_QC    NC_CHAR      2     3 FALSE    
#> 10    46 TEMP_ADJUSTED_ERROR NC_FLOAT     2     6 FALSE    
#> # ℹ 25 more rows
argo %>% hyper_dims()
#> # A tibble: 2 × 7
#>   name     length start count    id unlim coord_dim
#>   <chr>     <dbl> <int> <int> <int> <lgl> <lgl>    
#> 1 N_LEVELS    493     1   493    10 FALSE FALSE    
#> 2 N_PROF        2     1     2     8 FALSE FALSE    
argo %>% hyper_grids()
#> # A tibble: 16 × 4
#>    grid         ndims nvars active
#>    <chr>        <int> <int> <lgl> 
#>  1 D0,D9,D11,D8     4     1 FALSE 
#>  2 D6,D9,D11,D8     4     1 FALSE 
#>  3 D7,D9,D11,D8     4     3 FALSE 
#>  4 D6,D9,D8         3     1 FALSE 
#>  5 D10,D8           2    35 TRUE  
#>  6 D1,D8            2     1 FALSE 
#>  7 D2,D8            2     2 FALSE 
#>  8 D3,D8            2     2 FALSE 
#>  9 D5,D8            2     4 FALSE 
#> 10 D6,D8            2     2 FALSE 
#> 11 D7,D8            2     1 FALSE 
#> 12 D9,D8            2     1 FALSE 
#> 13 D0               1     3 FALSE 
#> 14 D2               1     2 FALSE 
#> 15 D5               1     1 FALSE 
#> 16 D8               1    17 FALSE 

## some global options
getOption("tidync.large.data.check")
#> [1] TRUE

getOption("tidync.silent")
#> [1] FALSE
op <- options(tidync.silent = TRUE)
getOption("tidync.silent")
#> [1] TRUE
options(op)