Compute precipitation indices over a time series
Arguments
- object
an object of class
chirps
as provided byget_chirps
- timeseries
logical,
FALSE
for a single point time series observation orTRUE
for a time series based on intervals- intervals
integer no lower than 5, for the days intervals when timeseries =
TRUE
Value
A data frame with precipitation indices:
- MLDS
maximum length of consecutive dry day, rain < 1 mm (days)
- MLWS
maximum length of consecutive wet days, rain >= 1 mm (days)
- R10mm
number of heavy precipitation days 10 >= rain < 20 mm (days)
- R20mm
number of very heavy precipitation days rain >= 20 (days)
- Rx1day
maximum 1-day precipitation (mm)
- Rx5day
maximum 5-day precipitation (mm)
- R95p
total precipitation when rain > 95th percentile (mm)
- R99p
total precipitation when rain > 99th percentile (mm)
- Rtotal
total precipitation (mm) in wet days, rain >= 1 (mm)
- SDII
simple daily intensity index, total precipitation divided by the number of wet days (mm/days)
References
Aguilar E., et al. (2005). Journal of Geophysical Research, 110(D23), D23107.
Kehel Z., et al. (2016). In: Applied Mathematics and Omics to Assess Crop Genetic Resources for Climate Change Adaptive Traits (eds Bari A., Damania A. B., Mackay M., Dayanandan S.), pp. 151–174. CRC Press.
Examples
if (FALSE) { # interactive()
lonlat <- data.frame(lon = c(-55.0281,-54.9857),
lat = c(-2.8094, -2.8756))
dates <- c("2017-12-15", "2017-12-31")
dt <- get_chirps(lonlat, dates, server = "ClimateSERV")
# take the indices for the entire period
precip_indices(dt, timeseries = FALSE)
# take the indices for periods of 7 days
precip_indices(dt, timeseries = TRUE, intervals = 7)
}