A set of different inequality and diversity measures.
Usage
concstats_inequ(x, normalized = FALSE, type = c("entropy", "gini",
"simpson", "palma", "grs", "all"), na.rm = TRUE, digits = NULL)
Arguments
- x
A non-negative numeric vector.
- normalized
Logical. Argument of the functions
concstats_entropy
,concstats_gini
specifying whether or not a normalized value is required. Ranges from (0, 1) and often used for comparison over time. Must be eitherTRUE
orFALSE
. The default isFALSE
.- type
A character string of the measure to be calculated, defaults to
concstats_entropy
. Input is not case-sensitive.- na.rm
A logical vector that indicates whether
NA
values should be excluded or not. If set toFALSE
the computation yieldsNA
if vector containsNA
values. Must be eitherTRUE
orFALSE
. The default isTRUE
.- digits
A non-null value for digits specifies the minimum number of significant digits to be printed in values. The default is
NULL
and will use base R print option. Significant digits defaults to 7.
Details
concstats_inequ
is a wrapper for the proposed inequality measures
concstats_entropy()
, concstats_gini()
,concstats_simpson()
,
concstats_palma()
,concstats_grs()
, concstats_all_inequ()
If no measure is specified, concstats_entropy
is the default.
concstats_entropy
returns the Shannon Entropy (Shannon, 1948),
concstats_gini
is the Gini coefficient. You can normalize the
Entropy and Gini measures by setting normalized = TRUE
concstats_palma
measures the ratio of inequality (normally used in
the context of measuring income inequality) of the top 10 percent to the
bottom 40 percent (Palma, 2006).
concstats_grs
is an alternative inequality measure (Ginevicius, 2009)
and
concstats_all_inequ
returns all measures in a one step procedure.
For more details or references please see the help page of the respective
function.
Examples
# a vector of market shares
x <- c(0.4, 0.2, 0.25, 0.1, 0.05)
# Calculate the Palma ratio
concstats_inequ(x, type = "palma")
#> [1] 2.666667
# Calculate the entropy measure directly
concstats_entropy(x, normalized = TRUE)
#> [1] 0.879203
# Calculate the group measures
concstats_inequ(x, type = "all", digits = 2)
#> Measure Value
#> 1 Entropy 2.04
#> 2 Gini Index 0.34
#> 3 Simpson Index 0.82
#> 4 Palma Ratio 2.67
#> 5 GRS 0.40