Calculate the survey effort necessary to detect species presence, given the species expected catch rate.
Source:R/detectionCalculate.R
detectionCalculate.Rd
This function calculates the number of survey effort units to necessary detect species presence using median estimated parameter values from jointModel(). Detecting species presence is defined as producing at least one true positive eDNA detection or catching at least one individual. See more examples in the Package Vignette.
Arguments
- modelfit
An object of class
stanfit
.- mu
A numeric vector of species densities/capture rates. If multiple traditional gear types are represented in the model, mu is the catch rate of gear type 1.
- cov.val
A numeric vector indicating the values of site-level covariates to use for prediction. Default is NULL.
- probability
A numeric value indicating the probability of detecting presence. The default is 0.9.
- qPCR.N
An integer indicating the number of qPCR replicates per eDNA sample. The default is 3.
Value
A summary table of survey efforts necessary to detect species presence, given mu, for each survey type.
Note
Before fitting the model, this function checks to ensure that the function is possible given the inputs. These checks include:
Input model fit is an object of class 'stanfit'.
Input mu is a numeric vector.
Input probability is a univariate numeric value.
If model fit contains alpha, cov.val must be provided.
Input cov.val is numeric.
Input cov.val is the same length as the number of estimated covariates.
Input model fit has converged (i.e. no divergent transitions after warm-up).
If any of these checks fail, the function returns an error message.
Examples
# \donttest{
# Ex. 1: Calculating necessary effort for detection with site-level
# covariates
# Load data
data(gobyData)
# Fit a model including 'Filter_time' and 'Salinity' site-level covariates
fit.cov <- jointModel(data = gobyData, cov = c('Filter_time','Salinity'),
family = "poisson", p10priors = c(1,20), q = FALSE,
multicore = FALSE)
#>
#> SAMPLING FOR MODEL 'joint_binary_cov_pois' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 8.9e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.89 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 3000 [ 0%] (Warmup)
#> Chain 1: Iteration: 500 / 3000 [ 16%] (Warmup)
#> Chain 1: Iteration: 501 / 3000 [ 16%] (Sampling)
#> Chain 1: Iteration: 1000 / 3000 [ 33%] (Sampling)
#> Chain 1: Iteration: 1500 / 3000 [ 50%] (Sampling)
#> Chain 1: Iteration: 2000 / 3000 [ 66%] (Sampling)
#> Chain 1: Iteration: 2500 / 3000 [ 83%] (Sampling)
#> Chain 1: Iteration: 3000 / 3000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.687 seconds (Warm-up)
#> Chain 1: 1.75 seconds (Sampling)
#> Chain 1: 2.437 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'joint_binary_cov_pois' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 5.4e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.54 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 3000 [ 0%] (Warmup)
#> Chain 2: Iteration: 500 / 3000 [ 16%] (Warmup)
#> Chain 2: Iteration: 501 / 3000 [ 16%] (Sampling)
#> Chain 2: Iteration: 1000 / 3000 [ 33%] (Sampling)
#> Chain 2: Iteration: 1500 / 3000 [ 50%] (Sampling)
#> Chain 2: Iteration: 2000 / 3000 [ 66%] (Sampling)
#> Chain 2: Iteration: 2500 / 3000 [ 83%] (Sampling)
#> Chain 2: Iteration: 3000 / 3000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.873 seconds (Warm-up)
#> Chain 2: 1.77 seconds (Sampling)
#> Chain 2: 2.643 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'joint_binary_cov_pois' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 4.5e-05 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.45 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 3000 [ 0%] (Warmup)
#> Chain 3: Iteration: 500 / 3000 [ 16%] (Warmup)
#> Chain 3: Iteration: 501 / 3000 [ 16%] (Sampling)
#> Chain 3: Iteration: 1000 / 3000 [ 33%] (Sampling)
#> Chain 3: Iteration: 1500 / 3000 [ 50%] (Sampling)
#> Chain 3: Iteration: 2000 / 3000 [ 66%] (Sampling)
#> Chain 3: Iteration: 2500 / 3000 [ 83%] (Sampling)
#> Chain 3: Iteration: 3000 / 3000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.912 seconds (Warm-up)
#> Chain 3: 1.759 seconds (Sampling)
#> Chain 3: 2.671 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'joint_binary_cov_pois' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 5.1e-05 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.51 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 3000 [ 0%] (Warmup)
#> Chain 4: Iteration: 500 / 3000 [ 16%] (Warmup)
#> Chain 4: Iteration: 501 / 3000 [ 16%] (Sampling)
#> Chain 4: Iteration: 1000 / 3000 [ 33%] (Sampling)
#> Chain 4: Iteration: 1500 / 3000 [ 50%] (Sampling)
#> Chain 4: Iteration: 2000 / 3000 [ 66%] (Sampling)
#> Chain 4: Iteration: 2500 / 3000 [ 83%] (Sampling)
#> Chain 4: Iteration: 3000 / 3000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 0.657 seconds (Warm-up)
#> Chain 4: 1.752 seconds (Sampling)
#> Chain 4: 2.409 seconds (Total)
#> Chain 4:
#> Refer to the eDNAjoint guide for visualization tips: https://ednajoint.netlify.app/tips#visualization-tips
# Calculate at the mean covariate values
# (covariates are standardized, so mean = 0)
detectionCalculate(fit.cov$model, mu = seq(from = 0.1, to = 1, by = 0.1),
cov.val = c(0,0), qPCR.N = 3)
#> mu n_traditional n_eDNA
#> [1,] 0.1 24 14
#> [2,] 0.2 12 7
#> [3,] 0.3 8 5
#> [4,] 0.4 6 4
#> [5,] 0.5 5 4
#> [6,] 0.6 4 3
#> [7,] 0.7 4 3
#> [8,] 0.8 3 3
#> [9,] 0.9 3 2
#> [10,] 1.0 3 2
# Calculate mu_critical at salinity 0.5 z-scores greater than the mean
detectionCalculate(fit.cov$model, mu = seq(from = 0.1, to = 1, by = 0.1),
cov.val = c(0,0.5), qPCR.N = 3)
#> mu n_traditional n_eDNA
#> [1,] 0.1 24 12
#> [2,] 0.2 12 6
#> [3,] 0.3 8 5
#> [4,] 0.4 6 4
#> [5,] 0.5 5 3
#> [6,] 0.6 4 3
#> [7,] 0.7 4 2
#> [8,] 0.8 3 2
#> [9,] 0.9 3 2
#> [10,] 1.0 3 2
# Ex. 2: Calculating necessary effort for detection with multiple traditional
# gear types
# Load data
data(greencrabData)
# Fit a model with no site-level covariates
fit.q <- jointModel(data = greencrabData, cov = NULL, family = "negbin",
p10priors = c(1,20), q = TRUE, multicore = FALSE)
#>
#> SAMPLING FOR MODEL 'joint_binary_catchability_negbin' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.000365 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 3.65 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 3000 [ 0%] (Warmup)
#> Chain 1: Iteration: 500 / 3000 [ 16%] (Warmup)
#> Chain 1: Iteration: 501 / 3000 [ 16%] (Sampling)
#> Chain 1: Iteration: 1000 / 3000 [ 33%] (Sampling)
#> Chain 1: Iteration: 1500 / 3000 [ 50%] (Sampling)
#> Chain 1: Iteration: 2000 / 3000 [ 66%] (Sampling)
#> Chain 1: Iteration: 2500 / 3000 [ 83%] (Sampling)
#> Chain 1: Iteration: 3000 / 3000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 3.45 seconds (Warm-up)
#> Chain 1: 11.29 seconds (Sampling)
#> Chain 1: 14.74 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'joint_binary_catchability_negbin' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 0.00028 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 2.8 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 3000 [ 0%] (Warmup)
#> Chain 2: Iteration: 500 / 3000 [ 16%] (Warmup)
#> Chain 2: Iteration: 501 / 3000 [ 16%] (Sampling)
#> Chain 2: Iteration: 1000 / 3000 [ 33%] (Sampling)
#> Chain 2: Iteration: 1500 / 3000 [ 50%] (Sampling)
#> Chain 2: Iteration: 2000 / 3000 [ 66%] (Sampling)
#> Chain 2: Iteration: 2500 / 3000 [ 83%] (Sampling)
#> Chain 2: Iteration: 3000 / 3000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 3.658 seconds (Warm-up)
#> Chain 2: 11.372 seconds (Sampling)
#> Chain 2: 15.03 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'joint_binary_catchability_negbin' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 0.000283 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 2.83 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 3000 [ 0%] (Warmup)
#> Chain 3: Iteration: 500 / 3000 [ 16%] (Warmup)
#> Chain 3: Iteration: 501 / 3000 [ 16%] (Sampling)
#> Chain 3: Iteration: 1000 / 3000 [ 33%] (Sampling)
#> Chain 3: Iteration: 1500 / 3000 [ 50%] (Sampling)
#> Chain 3: Iteration: 2000 / 3000 [ 66%] (Sampling)
#> Chain 3: Iteration: 2500 / 3000 [ 83%] (Sampling)
#> Chain 3: Iteration: 3000 / 3000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 3.197 seconds (Warm-up)
#> Chain 3: 10.905 seconds (Sampling)
#> Chain 3: 14.102 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'joint_binary_catchability_negbin' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 0.000273 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 2.73 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 3000 [ 0%] (Warmup)
#> Chain 4: Iteration: 500 / 3000 [ 16%] (Warmup)
#> Chain 4: Iteration: 501 / 3000 [ 16%] (Sampling)
#> Chain 4: Iteration: 1000 / 3000 [ 33%] (Sampling)
#> Chain 4: Iteration: 1500 / 3000 [ 50%] (Sampling)
#> Chain 4: Iteration: 2000 / 3000 [ 66%] (Sampling)
#> Chain 4: Iteration: 2500 / 3000 [ 83%] (Sampling)
#> Chain 4: Iteration: 3000 / 3000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 3.425 seconds (Warm-up)
#> Chain 4: 10.217 seconds (Sampling)
#> Chain 4: 13.642 seconds (Total)
#> Chain 4:
#> Refer to the eDNAjoint guide for visualization tips: https://ednajoint.netlify.app/tips#visualization-tips
# Calculate
detectionCalculate(fit.q$model, mu = seq(from = 0.1, to = 1, by = 0.1),
cov.val = NULL, qPCR.N = 3)
#> mu n_traditional_1 n_traditional_2 n_eDNA
#> [1,] 0.1 25 31 28
#> [2,] 0.2 13 16 14
#> [3,] 0.3 9 11 10
#> [4,] 0.4 7 9 8
#> [5,] 0.5 6 8 6
#> [6,] 0.6 5 7 5
#> [7,] 0.7 5 6 5
#> [8,] 0.8 5 5 4
#> [9,] 0.9 4 5 4
#> [10,] 1.0 4 5 4
# Change probability of detecting presence to 0.95
detectionCalculate(fit.q$model, mu = 0.1, cov.val = NULL,
probability = 0.95, qPCR.N = 3)
#> mu n_traditional_1 n_traditional_2 n_eDNA
#> [1,] 0.1 32 40 36
# }