Skip to contents

fire_exp_dir_multi() summarizes the directional vulnerability load for multiple points in a study area in a table.

Usage

fire_exp_dir_multi(exposure, values, ...)

Arguments

exposure

SpatRaster from fire_exp()

values

Spatvector of value as a point or simplified polygon

...

arguments passed to fire_exp_dir().

Value

a data.frame of the features with attributes: value featureID, degree, seg1 (binary), seg2 (binary), seg3 (binary), full (binary), outer (binary).

Details

This function summarizes multiple directional vulnerability assessments into a single table. For each degree, the frequency of input values with a continuous pathway at that trajectory is found. This summary can be useful in identifying trends in directional exposure to values within a regional area of interest.

Continuous pathways are assessed for the full span of all three directional assessment transect segments, or limited to the outer two segments. If the values being assessed are variable sizes and being represented as points, using the outer option is recommended. The inner-most segment is sensitive to the size of the value when a point is used. Adjusting the parameters for fire_exp_dir() is also supported. See details in fire_exp_dir() for more information.

References

Beverly JL, Forbes AM (2023) Assessing directional vulnerability to wildfire. Natural Hazards 117, 831-849. doi:10.1007/s11069-023-05885-3

Examples

# read example hazard data
hazard_file_path <- "extdata/hazard.tif"
hazard <- terra::rast(system.file(hazard_file_path, package = "fireexposuR"))

# generate 10 random example points within the hazard extent
e <- terra::buffer(terra::vect(terra::ext(hazard), crs = hazard), -15500)
points <- terra::spatSample(e, 10)

# compute exposure metric
exposure <- fire_exp(hazard)

# directional load for multiple points
fire_exp_dir_multi(exposure, points, interval = 10)
#> # A tibble: 360 × 7
#>    featureID   deg  seg1  seg2  seg3  full outer
#>        <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1         1    10     0     0     1     0     0
#>  2         1    20     0     0     1     0     0
#>  3         1    30     0     1     0     0     0
#>  4         1    40     0     1     0     0     0
#>  5         1    50     0     1     0     0     0
#>  6         1    60     0     1     1     0     1
#>  7         1    70     0     1     0     0     0
#>  8         1    80     0     1     0     0     0
#>  9         1    90     0     1     1     0     1
#> 10         1   100     1     1     1     1     1
#> # ℹ 350 more rows