Use case: working with spatial R packages
library("parzer")
if (!requireNamespace("sf")) install.packages("sf")
library("sf")
One may find themselves having to clean up messy coordinates as part of their project/work/etc. How does this look when fit into a workflow going all the way to visualization?
Let’s say you have the following messy coordinates that you’ve compiled from different places, leading to a variety of messy formats:
lats <- c(
"46.4183",
"46.4383° N",
"46.5683° N",
"46° 27´ 5.4\" N",
"46° 25.56’",
"N46°24’4.333"
)
lons <- c(
"25.7391",
"E25°34’6.4533",
"25.3391° E",
"25.8391° E",
"25° 35.56’",
"E25°34’4.333"
)
Parse messy coordinates
dat <- tibble::tibble(
longitude = parse_lon(lons),
latitude = parse_lat(lats)
)
dat
#> # A tibble: 6 × 2
#> longitude latitude
#> <dbl> <dbl>
#> 1 25.7 46.4
#> 2 25.6 46.4
#> 3 25.3 46.6
#> 4 25.8 46.5
#> 5 25.6 46.4
#> 6 25.6 46.4
Combine coordinates with other data
dat$shape <- c("round", "square", "triangle", "round", "square", "square")
dat$color <- c("blue", "yellow", "green", "red", "green", "yellow")
dat
#> # A tibble: 6 × 4
#> longitude latitude shape color
#> <dbl> <dbl> <chr> <chr>
#> 1 25.7 46.4 round blue
#> 2 25.6 46.4 square yellow
#> 3 25.3 46.6 triangle green
#> 4 25.8 46.5 round red
#> 5 25.6 46.4 square green
#> 6 25.6 46.4 square yellow
Coerce to an sf object
datsf <- sf::st_as_sf(dat, coords = c("longitude", "latitude"))
datsf
#> Simple feature collection with 6 features and 2 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 25.3391 ymin: 46.4012 xmax: 25.8391 ymax: 46.5683
#> CRS: NA
#> # A tibble: 6 × 3
#> shape color geometry
#> <chr> <chr> <POINT>
#> 1 round blue (25.7391 46.4183)
#> 2 square yellow (25.56846 46.4383)
#> 3 triangle green (25.3391 46.5683)
#> 4 round red (25.8391 46.4515)
#> 5 square green (25.59267 46.426)
#> 6 square yellow (25.56787 46.4012)
Calculate the center of the plot view
Plot data using the leaflet
package
if (!requireNamespace("leaflet")) install.packages("leaflet")
library("leaflet")
leaflet() %>%
addTiles() %>%
addMarkers(data = datsf) %>%
setView(center_lon, center_lat, zoom = 10)
We’d like to have data only for a certain area, e.g., a political
boundary or a park boundary. We can clip the data to a bounding box
using sf::st_crop()
.
First, define the bounding box, and visualize
bbox <- c(
xmin = 25.42813, ymin = 46.39455,
xmax = 25.68769, ymax = 46.60346
)
leaflet() %>%
addTiles() %>%
addRectangles(bbox[["xmin"]], bbox[["ymin"]], bbox[["xmax"]], bbox[["ymax"]]) %>%
setView(center_lon, center_lat, zoom = 10)
Crop the data to the bounding box
datsf_c <- st_crop(datsf, bbox)
Plot the new data