Applying a week lag to the data will create raster images
showing the mobility a week before the date of interest.
This function works only for QuadKeys reported without NAs for
n_crisis
and percent_change
variables .
Value
A data.frame with the extra columns n_crisis_lag_7
and
percent_change_7
.
n_crisis_lag_7
, is the same variable defined asn_crisis
in the Facebook mobility data.frame with a 7 day lag applied.percent_change_7
is the difference between then_crisis
value between weeks expressed as percentage.
Examples
files <- read_fb_mobility_files(
path_to_csvs = paste0(system.file("extdata",
package = "quadkeyr"
), "/"),
colnames = c(
"lat",
"lon",
"quadkey",
"date_time",
"n_crisis",
"percent_change"
),
coltypes = list(
lat = "d",
lon = "d",
quadkey = "c",
date_time = "T",
n_crisis = "c",
percent_change = "c"
)
)
#> New names:
#> • `` -> `...1`
#> New names:
#> • `` -> `...1`
#> New names:
#> • `` -> `...1`
apply_weekly_lag(data = files)
#> QuadKeys with 100% NAs for n_crisis: 305 (67.78% of total)
#> # A tibble: 435 × 10
#> # Groups: quadkey [145]
#> lat lon quadkey date_time n_crisis percent_change day
#> <dbl> <dbl> <chr> <dttm> <dbl> <dbl> <date>
#> 1 -34.5 -58.6 210321300… 2020-04-15 00:00:00 179. 3.75 2020-04-15
#> 2 -34.5 -58.6 210321300… 2020-04-15 08:00:00 NA 6.40 2020-04-15
#> 3 -34.5 -58.6 210321300… 2020-04-15 16:00:00 110. -0.245 2020-04-15
#> 4 -34.5 -58.6 210321300… 2020-04-15 00:00:00 NA -0.354 2020-04-15
#> 5 -34.5 -58.6 210321300… 2020-04-15 08:00:00 108. -0.130 2020-04-15
#> 6 -34.5 -58.6 210321300… 2020-04-15 16:00:00 NA 3.62 2020-04-15
#> 7 -34.5 -58.6 210321300… 2020-04-15 00:00:00 601. -12.4 2020-04-15
#> 8 -34.5 -58.6 210321300… 2020-04-15 08:00:00 55.7 -3.71 2020-04-15
#> 9 -34.5 -58.6 210321300… 2020-04-15 16:00:00 NA 1.89 2020-04-15
#> 10 -34.5 -58.6 210321300… 2020-04-15 00:00:00 13.1 -0.310 2020-04-15
#> # ℹ 425 more rows
#> # ℹ 3 more variables: hour <dbl>, n_crisis_lag_7 <dbl>, percent_change_7 <dbl>