Population growth functions are used during simulation
conducted by the sim
function.
The user is required to specify the name of a growth function while initialising the
sim_data
object using initialise
.
Value
Object of the same dimensions as x
that contains expected number
of individuals in the next time step.
Details
x
can be a vector, matrix, SpatRaster
or any other R
object for which basic arithmetic operations produce valid results.
These functions are intended to be used in the sim
function, where x
is a matrix of the same dimensions as the SpatRaster
object specified in n1_map
parameter.
References
Boukal, D. S., & Berec, L. (2002). Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters. Journal of Theoretical Biology, 218(3), 375-394. doi:10.1006/jtbi.2002.3084
Gompertz, B. (1825) On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contigencies. Philosophical Transactions of the Royal Society of London, 115, 513-583. doi:10.1098/rstl.1825.0026
Ricker, W.E. (1954) Stock and Recruitment. Journal of the Fisheries Research Board of Canada, 11, 559-623. doi:10.1139/f54-039
Hostetler, J.A. and Chandler, R.B. (2015), Improved state-space models for inference about spatial and temporal variation in abundance from count data. Ecology, 96: 1713-1723. doi:10.1890/14-1487.1
Courchamp, F., L. Berec and J. Gascoigne. 2008. Allee Effects in Ecology and Conservation. Oxford University Press, New York. 256 pp. ISBN 978-0-19-857030-1
Examples
x <- 1:10
exponential(x, r = 0.4)
#> [1] 1.491825 2.983649 4.475474 5.967299 7.459123 8.950948 10.442773
#> [8] 11.934598 13.426422 14.918247
ricker(x, r = 2, K = 5)
#> [1] 4.953032 6.640234 6.676623 5.967299 5.000000 4.021920 3.145303 2.409554
#> [9] 1.817069 1.353353
ricker(x, r = 2, K = 5, A = -5)
#> [1] 6.82095847 10.73111194 10.78991918 8.21773284 5.00000000 2.48869747
#> [7] 1.02624873 0.35325735 0.10200072 0.02478752
gompertz(x, r = 1.2, K = 5)
#> [1] 2.087102 3.181557 3.936002 4.519499 5.000000 5.411464 5.773278 6.097557
#> [9] 6.392388 6.663442
gompertz(x, r = 1.2, K = 5, A = 5)
#> [1] 0.5550921 1.5137850 2.6912102 3.9034978 5.0000000 5.8773825 6.4807880
#> [8] 6.7971920 6.8450876 6.6634415