Calculates the Effective Sample Sizes of one estimated variable's trace.
Source:R/calc_summary_stats.R
calc_summary_stats.Rd
Calculates the Effective Sample Sizes of one estimated variable's trace.
Arguments
- traces
one or more traces, supplies as either, (1) a numeric vector or, (2) a data frame of numeric values.
- sample_interval
the interval (the number of state transitions between samples) of the MCMC run that produced the trace. Using a different
sample_interval
than the actually used sampling interval will result in bogus return values.
Value
the summary statistics of the traces. If one numeric
vector is supplied, a list is returned with the elements
listed below. If the traces are supplied as a data frame,
a data frame is returned with the elements listed
below as column names.
The elements are:
mean
: meanstderr_mean
: standard error of the meanstdev
: standard deviationvariance
: variancemode
: modegeom_mean
: geometric meanhpd_interval_low
: lower bound of 95% highest posterior densityhpd_interval_high
: upper bound of 95% highest posterior densityact
: auto correlation timeess
: effective sample size
Note
This function assumes the burn-in is removed.
Use remove_burn_in
(on a vector) or
remove_burn_ins
(on a data frame) to remove
the burn-in.
See also
Use calc_summary_stats_trace
to calculate the
summary statistics of one trace (stored as a numeric vector). Use
calc_summary_stats_traces
to calculate the
summary statistics of more traces (stored as a data frame).
Examples
estimates_all <- parse_beast_tracelog_file(
get_tracerer_path("beast2_example_output.log")
)
estimates <- remove_burn_ins(estimates_all, burn_in_fraction = 0.1)
# From a single variable's trace
calc_summary_stats(
estimates$posterior,
sample_interval = 1000
)
#> mean stderr_mean stdev variance median mode geom_mean
#> 1 -70.58394 0.5044887 1.681629 2.827876 -69.87976 n/a n/a
#> hpd_interval_low hpd_interval_high act ess
#> 1 -74.15268 -68.68523 1000 10
# From all variables' traces
calc_summary_stats(
estimates,
sample_interval = 1000
)
#> mean stderr_mean stdev variance median
#> posterior -70.5839432 0.50448873 1.6816291 2.82787643 -69.8797613
#> likelihood -60.1725009 0.39642076 1.3214025 1.74610467 -60.0504225
#> prior -10.4114423 0.54245052 1.8081684 3.26947291 -10.5950270
#> treeLikelihood -60.1725009 0.39642076 1.3214025 1.74610467 -60.0504225
#> TreeHeight 0.9744748 0.14399367 0.3916244 0.15336965 0.8755907
#> BirthDeath -3.5036870 0.54245052 1.8081684 3.26947291 -3.6872718
#> birthRate2 1.4470488 0.21344112 0.6713951 0.45077144 1.4118781
#> relativeDeathRate2 0.4937568 0.06502354 0.1709096 0.02921009 0.4480670
#> mode geom_mean hpd_interval_low hpd_interval_high
#> posterior n/a n/a -74.1526820 -68.6852294
#> likelihood n/a n/a -62.4090389 -58.7371284
#> prior n/a n/a -14.1703653 -7.2820933
#> treeLikelihood n/a n/a -62.4090389 -58.7371284
#> TreeHeight n/a 0.91041547166058 0.4529637 1.8159958
#> BirthDeath n/a n/a -7.2626100 -0.3743380
#> birthRate2 n/a 1.28823302868404 0.3909076 2.8041208
#> relativeDeathRate2 n/a 0.466468860930895 0.2496224 0.7107459
#> act ess
#> posterior 1000.000 10.000000
#> likelihood 1000.000 10.000000
#> prior 1000.000 10.000000
#> treeLikelihood 1000.000 10.000000
#> TreeHeight 1502.121 6.657254
#> BirthDeath 1000.000 10.000000
#> birthRate2 1122.942 8.905181
#> relativeDeathRate2 1608.296 6.217762