Print the summary of a cosinor model
Examples
fit <- cglmm(vit_d ~ X + amp_acro(time,
group = "X",
n_components = 1,
period = 12
), data = vitamind)
summary(fit)
#>
#> Conditional Model
#> Raw model coefficients:
#> estimate standard.error lower.CI upper.CI p.value
#> (Intercept) 29.6897986 0.4583696 28.7914106 30.58819 < 2.22e-16 ***
#> X1 1.9018605 0.7919688 0.3496302 3.45409 0.016331 *
#> X0:main_rrr1 0.9307837 0.6260656 -0.2962822 2.15785 0.137089
#> X1:main_rrr1 6.5102912 0.9303406 4.6868572 8.33373 2.6010e-12 ***
#> X0:main_sss1 6.2009927 0.6701952 4.8874342 7.51455 < 2.22e-16 ***
#> X1:main_sss1 4.8184563 0.8963299 3.0616821 6.57523 7.6259e-08 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Transformed coefficients:
#> estimate standard.error lower.CI upper.CI p.value
#> (Intercept) 29.68979858 0.45836964 28.79141059 30.58819 < 2.22e-16 ***
#> [X=1] 1.90186054 0.79196879 0.34963023 3.45409 0.016331 *
#> [X=0]:amp1 6.27046001 0.66965643 4.95795753 7.58296 < 2.22e-16 ***
#> [X=1]:amp1 8.09946996 0.89570579 6.34391887 9.85502 < 2.22e-16 ***
#> [X=0]:acr1 1.42180626 0.09993555 1.22593618 1.61768 < 2.22e-16 ***
#> [X=1]:acr1 0.63715378 0.11493856 0.41187833 0.86243 2.966e-08 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1