Skip to contents

This function calculates the number of survey effort units to necessary detect species presence using median estimated parameter values from joint_model(). Detecting species presence is defined as producing at least one true positive eDNA detection or catching at least one individual. See more examples in the Package Vignette.

Usage

detection_calculate(
  model_fit,
  mu,
  cov_val = NULL,
  probability = 0.9,
  pcr_n = 3
)

Arguments

model_fit

An object of class stanfit.

mu

A numeric vector of species densities/capture rates. If multiple traditional gear types are represented in the model, mu is the catch rate of gear type 1.

cov_val

A numeric vector indicating the values of site-level covariates to use for prediction. Default is NULL.

probability

A numeric value indicating the probability of detecting presence. The default is 0.9.

pcr_n

An integer indicating the number of PCR replicates per eDNA sample. The default is 3.

Value

A summary table of survey efforts necessary to detect species presence, given mu, for each survey type.

Note

Before fitting the model, this function checks to ensure that the function is possible given the inputs. These checks include:

  • Input model fit is an object of class 'stanfit'.

  • Input mu is a numeric vector.

  • Input probability is a univariate numeric value.

  • If model fit contains alpha, cov_val must be provided.

  • Input cov_val is numeric.

  • Input cov_val is the same length as the number of estimated covariates.

  • Input model fit has converged (i.e. no divergent transitions after warm-up).

If any of these checks fail, the function returns an error message.

Examples

# \donttest{
# Ex. 1: Calculating necessary effort for detection with site-level
# covariates

# Load data
data(goby_data)

# Fit a model including 'Filter_time' and 'Salinity' site-level covariates
fit_cov <- joint_model(data = goby_data, cov = c('Filter_time','Salinity'),
                       family = "poisson", p10_priors = c(1,20), q = FALSE,
                       multicore = FALSE)
#> 
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 5e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.5 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 3000 [  0%]  (Warmup)
#> Chain 1: Iteration:  500 / 3000 [ 16%]  (Warmup)
#> Chain 1: Iteration:  501 / 3000 [ 16%]  (Sampling)
#> Chain 1: Iteration: 1000 / 3000 [ 33%]  (Sampling)
#> Chain 1: Iteration: 1500 / 3000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 2000 / 3000 [ 66%]  (Sampling)
#> Chain 1: Iteration: 2500 / 3000 [ 83%]  (Sampling)
#> Chain 1: Iteration: 3000 / 3000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 0.481 seconds (Warm-up)
#> Chain 1:                0.843 seconds (Sampling)
#> Chain 1:                1.324 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 2.9e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.29 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 3000 [  0%]  (Warmup)
#> Chain 2: Iteration:  500 / 3000 [ 16%]  (Warmup)
#> Chain 2: Iteration:  501 / 3000 [ 16%]  (Sampling)
#> Chain 2: Iteration: 1000 / 3000 [ 33%]  (Sampling)
#> Chain 2: Iteration: 1500 / 3000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 2000 / 3000 [ 66%]  (Sampling)
#> Chain 2: Iteration: 2500 / 3000 [ 83%]  (Sampling)
#> Chain 2: Iteration: 3000 / 3000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 0.427 seconds (Warm-up)
#> Chain 2:                0.871 seconds (Sampling)
#> Chain 2:                1.298 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 3.2e-05 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.32 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 3000 [  0%]  (Warmup)
#> Chain 3: Iteration:  500 / 3000 [ 16%]  (Warmup)
#> Chain 3: Iteration:  501 / 3000 [ 16%]  (Sampling)
#> Chain 3: Iteration: 1000 / 3000 [ 33%]  (Sampling)
#> Chain 3: Iteration: 1500 / 3000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 2000 / 3000 [ 66%]  (Sampling)
#> Chain 3: Iteration: 2500 / 3000 [ 83%]  (Sampling)
#> Chain 3: Iteration: 3000 / 3000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 0.362 seconds (Warm-up)
#> Chain 3:                0.872 seconds (Sampling)
#> Chain 3:                1.234 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 3.2e-05 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.32 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 3000 [  0%]  (Warmup)
#> Chain 4: Iteration:  500 / 3000 [ 16%]  (Warmup)
#> Chain 4: Iteration:  501 / 3000 [ 16%]  (Sampling)
#> Chain 4: Iteration: 1000 / 3000 [ 33%]  (Sampling)
#> Chain 4: Iteration: 1500 / 3000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 2000 / 3000 [ 66%]  (Sampling)
#> Chain 4: Iteration: 2500 / 3000 [ 83%]  (Sampling)
#> Chain 4: Iteration: 3000 / 3000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 0.39 seconds (Warm-up)
#> Chain 4:                0.872 seconds (Sampling)
#> Chain 4:                1.262 seconds (Total)
#> Chain 4: 
#> Refer to the eDNAjoint guide for visualization tips:  https://ednajoint.netlify.app/tips#visualization-tips 

# Calculate at the mean covariate values
# (covariates are standardized, so mean = 0)
detection_calculate(fit_cov$model, mu = seq(from = 0.1, to = 1, by = 0.1),
                    cov_val = c(0,0), pcr_n = 3)
#>        mu n_traditional n_eDNA
#>  [1,] 0.1            24     14
#>  [2,] 0.2            12      7
#>  [3,] 0.3             8      5
#>  [4,] 0.4             6      4
#>  [5,] 0.5             5      4
#>  [6,] 0.6             4      3
#>  [7,] 0.7             4      3
#>  [8,] 0.8             3      3
#>  [9,] 0.9             3      2
#> [10,] 1.0             3      2

# Calculate mu_critical at salinity 0.5 z-scores greater than the mean
detection_calculate(fit_cov$model, mu = seq(from = 0.1, to = 1, by = 0.1),
                    cov_val = c(0,0.5), pcr_n = 3)
#>        mu n_traditional n_eDNA
#>  [1,] 0.1            24     12
#>  [2,] 0.2            12      6
#>  [3,] 0.3             8      5
#>  [4,] 0.4             6      4
#>  [5,] 0.5             5      3
#>  [6,] 0.6             4      3
#>  [7,] 0.7             4      2
#>  [8,] 0.8             3      2
#>  [9,] 0.9             3      2
#> [10,] 1.0             3      2

# Ex. 2: Calculating necessary effort for detection with multiple traditional
# gear types

# Load data
data(green_crab_data)

# Fit a model with no site-level covariates
fit_q <- joint_model(data = green_crab_data, cov = NULL, family = "negbin",
                     p10_priors = c(1,20), q = TRUE, multicore = FALSE)
#> 
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 0.000465 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 4.65 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 3000 [  0%]  (Warmup)
#> Chain 1: Iteration:  500 / 3000 [ 16%]  (Warmup)
#> Chain 1: Iteration:  501 / 3000 [ 16%]  (Sampling)
#> Chain 1: Iteration: 1000 / 3000 [ 33%]  (Sampling)
#> Chain 1: Iteration: 1500 / 3000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 2000 / 3000 [ 66%]  (Sampling)
#> Chain 1: Iteration: 2500 / 3000 [ 83%]  (Sampling)
#> Chain 1: Iteration: 3000 / 3000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 4.732 seconds (Warm-up)
#> Chain 1:                12.766 seconds (Sampling)
#> Chain 1:                17.498 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 0.000392 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 3.92 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 3000 [  0%]  (Warmup)
#> Chain 2: Iteration:  500 / 3000 [ 16%]  (Warmup)
#> Chain 2: Iteration:  501 / 3000 [ 16%]  (Sampling)
#> Chain 2: Iteration: 1000 / 3000 [ 33%]  (Sampling)
#> Chain 2: Iteration: 1500 / 3000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 2000 / 3000 [ 66%]  (Sampling)
#> Chain 2: Iteration: 2500 / 3000 [ 83%]  (Sampling)
#> Chain 2: Iteration: 3000 / 3000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 4.983 seconds (Warm-up)
#> Chain 2:                14.088 seconds (Sampling)
#> Chain 2:                19.071 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 0.00039 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 3.9 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 3000 [  0%]  (Warmup)
#> Chain 3: Iteration:  500 / 3000 [ 16%]  (Warmup)
#> Chain 3: Iteration:  501 / 3000 [ 16%]  (Sampling)
#> Chain 3: Iteration: 1000 / 3000 [ 33%]  (Sampling)
#> Chain 3: Iteration: 1500 / 3000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 2000 / 3000 [ 66%]  (Sampling)
#> Chain 3: Iteration: 2500 / 3000 [ 83%]  (Sampling)
#> Chain 3: Iteration: 3000 / 3000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 4.77 seconds (Warm-up)
#> Chain 3:                14.271 seconds (Sampling)
#> Chain 3:                19.041 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 0.000386 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 3.86 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 3000 [  0%]  (Warmup)
#> Chain 4: Iteration:  500 / 3000 [ 16%]  (Warmup)
#> Chain 4: Iteration:  501 / 3000 [ 16%]  (Sampling)
#> Chain 4: Iteration: 1000 / 3000 [ 33%]  (Sampling)
#> Chain 4: Iteration: 1500 / 3000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 2000 / 3000 [ 66%]  (Sampling)
#> Chain 4: Iteration: 2500 / 3000 [ 83%]  (Sampling)
#> Chain 4: Iteration: 3000 / 3000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 4.914 seconds (Warm-up)
#> Chain 4:                9.601 seconds (Sampling)
#> Chain 4:                14.515 seconds (Total)
#> Chain 4: 
#> Refer to the eDNAjoint guide for visualization tips:  https://ednajoint.netlify.app/tips#visualization-tips 

# Calculate
detection_calculate(fit_q$model, mu = seq(from = 0.1, to = 1, by = 0.1),
                    cov_val = NULL, pcr_n = 3)
#>        mu n_traditional_1 n_traditional_2 n_eDNA
#>  [1,] 0.1              25              32     28
#>  [2,] 0.2              13              17     15
#>  [3,] 0.3               9              12     10
#>  [4,] 0.4               7               9      8
#>  [5,] 0.5               6               8      6
#>  [6,] 0.6               6               7      5
#>  [7,] 0.7               5               6      5
#>  [8,] 0.8               5               5      4
#>  [9,] 0.9               4               5      4
#> [10,] 1.0               4               5      4

# Change probability of detecting presence to 0.95
detection_calculate(fit_q$model, mu = 0.1, cov_val = NULL,
                    probability = 0.95, pcr_n = 3)
#>       mu n_traditional_1 n_traditional_2 n_eDNA
#> [1,] 0.1              32              41     37
# }