
Perform model selection using leave one out cross validation of model objects
Source:R/joint_select.R
joint_select.RdThis function performs leave one out cross validation of a list of model
fits using functions in the loo package, as described in Vehtari, Gelman,
and Gabry (2017) doi:10.1007/s11222-016-9696-4. Compare models fit using
joint_model() or models fits using traditional_model(). See more examples
in the Package
Vignette.
Value
A matrix of delta elpd (expected log pointwise predictive density)
between model fits. Function is performed using the loo package.
Note
Before model selection, this function makes the following check:
Input is a list of model fits of class 'stanfit'.
All models compared were fit wither either
joint_model()or all withtraditional_model().
If any of these checks fail, the function returns an error message.
Examples
# \donttest{
data(green_crab_data)
# Fit a model without estimating a gear scaling coefficient for traditional
# survey gear types.
# This model assumes all traditional survey methods have the same
# catchability.
# Count data is modeled using a poisson distribution.
fit_no_q <- joint_model(data = green_crab_data, family = "poisson",
p10_priors = c(1,20), q = FALSE, multicore = FALSE)
#>
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 3.9e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.39 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 3000 [ 0%] (Warmup)
#> Chain 1: Iteration: 500 / 3000 [ 16%] (Warmup)
#> Chain 1: Iteration: 501 / 3000 [ 16%] (Sampling)
#> Chain 1: Iteration: 1000 / 3000 [ 33%] (Sampling)
#> Chain 1: Iteration: 1500 / 3000 [ 50%] (Sampling)
#> Chain 1: Iteration: 2000 / 3000 [ 66%] (Sampling)
#> Chain 1: Iteration: 2500 / 3000 [ 83%] (Sampling)
#> Chain 1: Iteration: 3000 / 3000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.428 seconds (Warm-up)
#> Chain 1: 0.874 seconds (Sampling)
#> Chain 1: 1.302 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 3.3e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.33 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 3000 [ 0%] (Warmup)
#> Chain 2: Iteration: 500 / 3000 [ 16%] (Warmup)
#> Chain 2: Iteration: 501 / 3000 [ 16%] (Sampling)
#> Chain 2: Iteration: 1000 / 3000 [ 33%] (Sampling)
#> Chain 2: Iteration: 1500 / 3000 [ 50%] (Sampling)
#> Chain 2: Iteration: 2000 / 3000 [ 66%] (Sampling)
#> Chain 2: Iteration: 2500 / 3000 [ 83%] (Sampling)
#> Chain 2: Iteration: 3000 / 3000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.461 seconds (Warm-up)
#> Chain 2: 0.993 seconds (Sampling)
#> Chain 2: 1.454 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 3.6e-05 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.36 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 3000 [ 0%] (Warmup)
#> Chain 3: Iteration: 500 / 3000 [ 16%] (Warmup)
#> Chain 3: Iteration: 501 / 3000 [ 16%] (Sampling)
#> Chain 3: Iteration: 1000 / 3000 [ 33%] (Sampling)
#> Chain 3: Iteration: 1500 / 3000 [ 50%] (Sampling)
#> Chain 3: Iteration: 2000 / 3000 [ 66%] (Sampling)
#> Chain 3: Iteration: 2500 / 3000 [ 83%] (Sampling)
#> Chain 3: Iteration: 3000 / 3000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.414 seconds (Warm-up)
#> Chain 3: 1.106 seconds (Sampling)
#> Chain 3: 1.52 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 3.3e-05 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.33 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 3000 [ 0%] (Warmup)
#> Chain 4: Iteration: 500 / 3000 [ 16%] (Warmup)
#> Chain 4: Iteration: 501 / 3000 [ 16%] (Sampling)
#> Chain 4: Iteration: 1000 / 3000 [ 33%] (Sampling)
#> Chain 4: Iteration: 1500 / 3000 [ 50%] (Sampling)
#> Chain 4: Iteration: 2000 / 3000 [ 66%] (Sampling)
#> Chain 4: Iteration: 2500 / 3000 [ 83%] (Sampling)
#> Chain 4: Iteration: 3000 / 3000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 0.428 seconds (Warm-up)
#> Chain 4: 1.096 seconds (Sampling)
#> Chain 4: 1.524 seconds (Total)
#> Chain 4:
#> Refer to the eDNAjoint guide for visualization tips: https://ednajoint.netlify.app/tips#visualization-tips
# Fit a model estimating a gear scaling coefficient for traditional
# survey gear types.
# This model does not assume all traditional survey methods have the
# same catchability.
# Gear type 1 is used as the reference gear type.
# Count data is modeled using a negative binomial distribution.
fit_q <- joint_model(data = green_crab_data, family = "negbin",
p10_priors = c(1,20), q = TRUE, multicore = FALSE)
#>
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.000409 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 4.09 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 3000 [ 0%] (Warmup)
#> Chain 1: Iteration: 500 / 3000 [ 16%] (Warmup)
#> Chain 1: Iteration: 501 / 3000 [ 16%] (Sampling)
#> Chain 1: Iteration: 1000 / 3000 [ 33%] (Sampling)
#> Chain 1: Iteration: 1500 / 3000 [ 50%] (Sampling)
#> Chain 1: Iteration: 2000 / 3000 [ 66%] (Sampling)
#> Chain 1: Iteration: 2500 / 3000 [ 83%] (Sampling)
#> Chain 1: Iteration: 3000 / 3000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 5.143 seconds (Warm-up)
#> Chain 1: 16.759 seconds (Sampling)
#> Chain 1: 21.902 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 0.000424 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 4.24 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 3000 [ 0%] (Warmup)
#> Chain 2: Iteration: 500 / 3000 [ 16%] (Warmup)
#> Chain 2: Iteration: 501 / 3000 [ 16%] (Sampling)
#> Chain 2: Iteration: 1000 / 3000 [ 33%] (Sampling)
#> Chain 2: Iteration: 1500 / 3000 [ 50%] (Sampling)
#> Chain 2: Iteration: 2000 / 3000 [ 66%] (Sampling)
#> Chain 2: Iteration: 2500 / 3000 [ 83%] (Sampling)
#> Chain 2: Iteration: 3000 / 3000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 4.664 seconds (Warm-up)
#> Chain 2: 15.355 seconds (Sampling)
#> Chain 2: 20.019 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 0.000382 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 3.82 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 3000 [ 0%] (Warmup)
#> Chain 3: Iteration: 500 / 3000 [ 16%] (Warmup)
#> Chain 3: Iteration: 501 / 3000 [ 16%] (Sampling)
#> Chain 3: Iteration: 1000 / 3000 [ 33%] (Sampling)
#> Chain 3: Iteration: 1500 / 3000 [ 50%] (Sampling)
#> Chain 3: Iteration: 2000 / 3000 [ 66%] (Sampling)
#> Chain 3: Iteration: 2500 / 3000 [ 83%] (Sampling)
#> Chain 3: Iteration: 3000 / 3000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 4.635 seconds (Warm-up)
#> Chain 3: 15.563 seconds (Sampling)
#> Chain 3: 20.198 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 0.000389 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 3.89 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 3000 [ 0%] (Warmup)
#> Chain 4: Iteration: 500 / 3000 [ 16%] (Warmup)
#> Chain 4: Iteration: 501 / 3000 [ 16%] (Sampling)
#> Chain 4: Iteration: 1000 / 3000 [ 33%] (Sampling)
#> Chain 4: Iteration: 1500 / 3000 [ 50%] (Sampling)
#> Chain 4: Iteration: 2000 / 3000 [ 66%] (Sampling)
#> Chain 4: Iteration: 2500 / 3000 [ 83%] (Sampling)
#> Chain 4: Iteration: 3000 / 3000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 4.704 seconds (Warm-up)
#> Chain 4: 13.963 seconds (Sampling)
#> Chain 4: 18.667 seconds (Total)
#> Chain 4:
#> Refer to the eDNAjoint guide for visualization tips: https://ednajoint.netlify.app/tips#visualization-tips
# Perform model selection
joint_select(model_fits = list(fit_no_q$model, fit_q$model))
#> elpd_diff se_diff
#> model2 0.0 0.0
#> model1 -164.5 39.0
# }