Skip to contents

This function uses the full posterior distributions of parameters estimated by joint_model() to calculate mu_critical, or the expected catch rate at which the probabilities of a false positive eDNA detection and true positive eDNA detection are equal. See more examples in the Package Vignette.

Usage

mu_critical(model_fit, cov_val = NULL, ci = 0.9)

Arguments

model_fit

An object of class stanfit

cov_val

A numeric vector indicating the values of site-level covariates to use for prediction. Default is NULL.

ci

Credible interval calculated using highest density interval (HDI). Default is 0.9 (i.e., 90% credible interval).

Value

A list with median mu_critical and lower and upper bounds on the credible interval. If multiple gear types are used, a table of mu_critical and lower and upper credible interval bounds is returned with one column for each gear type.

Note

Before fitting the model, this function checks to ensure that the function is possible given the inputs. These checks include:

  • Input model fit is an object of class 'stanfit'.

  • Input credible interval is a univariate numeric value greater than 0 and less than 1.

  • Input model fit contains p10 parameter.

  • If model fit contains alpha, cov_val must be provided.

  • Input cov_val is numeric.

  • Input cov_val is the same length as the number of estimated covariates.

  • Input model fit has converged (i.e. no divergent transitions after warm-up).

If any of these checks fail, the function returns an error message.

Examples

# \donttest{
# Ex. 1: Calculating mu_critical with site-level covariates

# Load data
data(goby_data)

# Fit a model including 'Filter_time' and 'Salinity' site-level covariates
fit_cov <- joint_model(data = goby_data, cov = c('Filter_time','Salinity'),
                       family = "poisson", p10_priors = c(1,20), q = FALSE,
                       multicore = FALSE)
#> 
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 3.1e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.31 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 3000 [  0%]  (Warmup)
#> Chain 1: Iteration:  500 / 3000 [ 16%]  (Warmup)
#> Chain 1: Iteration:  501 / 3000 [ 16%]  (Sampling)
#> Chain 1: Iteration: 1000 / 3000 [ 33%]  (Sampling)
#> Chain 1: Iteration: 1500 / 3000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 2000 / 3000 [ 66%]  (Sampling)
#> Chain 1: Iteration: 2500 / 3000 [ 83%]  (Sampling)
#> Chain 1: Iteration: 3000 / 3000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 0.425 seconds (Warm-up)
#> Chain 1:                0.873 seconds (Sampling)
#> Chain 1:                1.298 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 2.6e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.26 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 3000 [  0%]  (Warmup)
#> Chain 2: Iteration:  500 / 3000 [ 16%]  (Warmup)
#> Chain 2: Iteration:  501 / 3000 [ 16%]  (Sampling)
#> Chain 2: Iteration: 1000 / 3000 [ 33%]  (Sampling)
#> Chain 2: Iteration: 1500 / 3000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 2000 / 3000 [ 66%]  (Sampling)
#> Chain 2: Iteration: 2500 / 3000 [ 83%]  (Sampling)
#> Chain 2: Iteration: 3000 / 3000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 0.38 seconds (Warm-up)
#> Chain 2:                0.854 seconds (Sampling)
#> Chain 2:                1.234 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 2.7e-05 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.27 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 3000 [  0%]  (Warmup)
#> Chain 3: Iteration:  500 / 3000 [ 16%]  (Warmup)
#> Chain 3: Iteration:  501 / 3000 [ 16%]  (Sampling)
#> Chain 3: Iteration: 1000 / 3000 [ 33%]  (Sampling)
#> Chain 3: Iteration: 1500 / 3000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 2000 / 3000 [ 66%]  (Sampling)
#> Chain 3: Iteration: 2500 / 3000 [ 83%]  (Sampling)
#> Chain 3: Iteration: 3000 / 3000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 0.421 seconds (Warm-up)
#> Chain 3:                0.856 seconds (Sampling)
#> Chain 3:                1.277 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 2.6e-05 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.26 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 3000 [  0%]  (Warmup)
#> Chain 4: Iteration:  500 / 3000 [ 16%]  (Warmup)
#> Chain 4: Iteration:  501 / 3000 [ 16%]  (Sampling)
#> Chain 4: Iteration: 1000 / 3000 [ 33%]  (Sampling)
#> Chain 4: Iteration: 1500 / 3000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 2000 / 3000 [ 66%]  (Sampling)
#> Chain 4: Iteration: 2500 / 3000 [ 83%]  (Sampling)
#> Chain 4: Iteration: 3000 / 3000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 1.169 seconds (Warm-up)
#> Chain 4:                1.188 seconds (Sampling)
#> Chain 4:                2.357 seconds (Total)
#> Chain 4: 
#> Refer to the eDNAjoint guide for visualization tips:  https://ednajoint.netlify.app/tips#visualization-tips 

# Calculate mu_critical at the mean covariate values (covariates are
# standardized, so mean = 0)
mu_critical(fit_cov$model, cov_val = c(0,0), ci = 0.9)
#> $median
#> [1] 0.005318584
#> 
#> $lower_ci
#> Highest Density Interval: 1.77e-03
#> 
#> $upper_ci
#> Highest Density Interval: 9.63e-03
#> 

# Calculate mu_critical at habitat size 0.5 z-scores greater than the mean
mu_critical(fit_cov$model, cov_val = c(0,0.5), ci = 0.9)
#> $median
#> [1] 0.004462148
#> 
#> $lower_ci
#> Highest Density Interval: 1.43e-03
#> 
#> $upper_ci
#> Highest Density Interval: 8.08e-03
#> 

# Ex. 2: Calculating mu_critical with multiple traditional gear types

# Load data
data(green_crab_data)

# Fit a model with no site-level covariates
fit_q <- joint_model(data = green_crab_data, cov = NULL, family = "negbin",
                     p10_priors = c(1,20), q = TRUE, multicore = FALSE)
#> 
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 0.000403 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 4.03 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 3000 [  0%]  (Warmup)
#> Chain 1: Iteration:  500 / 3000 [ 16%]  (Warmup)
#> Chain 1: Iteration:  501 / 3000 [ 16%]  (Sampling)
#> Chain 1: Iteration: 1000 / 3000 [ 33%]  (Sampling)
#> Chain 1: Iteration: 1500 / 3000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 2000 / 3000 [ 66%]  (Sampling)
#> Chain 1: Iteration: 2500 / 3000 [ 83%]  (Sampling)
#> Chain 1: Iteration: 3000 / 3000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 4.726 seconds (Warm-up)
#> Chain 1:                12.927 seconds (Sampling)
#> Chain 1:                17.653 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 0.000449 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 4.49 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 3000 [  0%]  (Warmup)
#> Chain 2: Iteration:  500 / 3000 [ 16%]  (Warmup)
#> Chain 2: Iteration:  501 / 3000 [ 16%]  (Sampling)
#> Chain 2: Iteration: 1000 / 3000 [ 33%]  (Sampling)
#> Chain 2: Iteration: 1500 / 3000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 2000 / 3000 [ 66%]  (Sampling)
#> Chain 2: Iteration: 2500 / 3000 [ 83%]  (Sampling)
#> Chain 2: Iteration: 3000 / 3000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 5.067 seconds (Warm-up)
#> Chain 2:                17.047 seconds (Sampling)
#> Chain 2:                22.114 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 0.000435 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 4.35 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 3000 [  0%]  (Warmup)
#> Chain 3: Iteration:  500 / 3000 [ 16%]  (Warmup)
#> Chain 3: Iteration:  501 / 3000 [ 16%]  (Sampling)
#> Chain 3: Iteration: 1000 / 3000 [ 33%]  (Sampling)
#> Chain 3: Iteration: 1500 / 3000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 2000 / 3000 [ 66%]  (Sampling)
#> Chain 3: Iteration: 2500 / 3000 [ 83%]  (Sampling)
#> Chain 3: Iteration: 3000 / 3000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 4.837 seconds (Warm-up)
#> Chain 3:                12.48 seconds (Sampling)
#> Chain 3:                17.317 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL 'joint_count' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 0.000433 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 4.33 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 3000 [  0%]  (Warmup)
#> Chain 4: Iteration:  500 / 3000 [ 16%]  (Warmup)
#> Chain 4: Iteration:  501 / 3000 [ 16%]  (Sampling)
#> Chain 4: Iteration: 1000 / 3000 [ 33%]  (Sampling)
#> Chain 4: Iteration: 1500 / 3000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 2000 / 3000 [ 66%]  (Sampling)
#> Chain 4: Iteration: 2500 / 3000 [ 83%]  (Sampling)
#> Chain 4: Iteration: 3000 / 3000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 5.104 seconds (Warm-up)
#> Chain 4:                14.697 seconds (Sampling)
#> Chain 4:                19.801 seconds (Total)
#> Chain 4: 
#> Refer to the eDNAjoint guide for visualization tips:  https://ednajoint.netlify.app/tips#visualization-tips 

# Calculate mu_critical
mu_critical(fit_q$model, cov_val = NULL, ci = 0.9)
#>              gear_1     gear_2
#> median   0.05962583 0.04601941
#> lower_ci 0.00982894 0.00700122
#> upper_ci 0.13537095 0.10428428
# }