This function computes the probability density function (PDF) and the highest posterior density interval (hdi) of the felling date range based on the observed number of sapwood rings, their chronological dating, and the selected sapwood data and model.
Usage
sw_interval(
n_sapwood = NA,
last = 1,
hdi = FALSE,
cred_mass = 0.954,
sw_data = "Hollstein_1980",
densfun = "lognormal",
plot = FALSE
)
Arguments
- n_sapwood
A
numeric
. The number of observed sapwood rings.- last
A
numeric
. The calendar year assigned to the outermost sapwood ring (optional, default = 0).- hdi
A
logical.
IfTRUE
, the lower and upper limit of the highest density interval (credible interval) are returned. WhenFALSE
, a matrix is returned with scaled p-values for each number of observed sapwood rings.- cred_mass
A
scalar
in the range of[0, 1]
specifying the mass within the credible interval (default = .954)- sw_data
The name of the sapwood data set to use for modelling. It should be one of the data sets listed in
sw_data_overview()
, or the name of adata.frame
with sapwood data in columnsn_sapwood
andcount
.- densfun
Name of the density function fitted to the sapwood data set. Should be one of:
lognormal (the default value),
normal,
weibull,
gammma.
- plot
A
logical
.If
TRUE
, a ggplot-style graph is returned of the individual sapwood model and estimate of the felling date range.If
FALSE
, alist
with the numeric output of the modelling process is returned.
Value
Depends on the value of hdi
.
If
hdi = TRUE
, anumeric vector
reporting the upper and lower limit of the hdi (attributes provide more detail oncred_mass
and the applied sapwood model (sw_data
)).If
hdi = FALSE
, adata.frame
with scaled p values for each number of observed sapwood rings.
Examples
# 10 sapwood rings observed and the Wazny 1990 sapwood model:
sw_interval(
n_sapwood = 10,
last = 1234,
hdi = TRUE,
cred_mass = .95,
sw_data = "Wazny_1990",
densfun = "lognormal",
plot = FALSE
)
#> lower upper p
#> 1 1234 1250 0.9611793
# same example as above, but with numerical output (hdi = FALSE):
sw_interval(
n_sapwood = 10,
last = 1234,
hdi = FALSE,
cred_mass = .95,
sw_data = "Wazny_1990",
densfun = "lognormal",
plot = FALSE
)
#> year n_sapwood p
#> 1 1234 10 4.387611e-02
#> 2 1235 11 6.219097e-02
#> 3 1236 12 7.801314e-02
#> 4 1237 13 8.894482e-02
#> 5 1238 14 9.400306e-02
#> 6 1239 15 9.347466e-02
#> 7 1240 16 8.845988e-02
#> 8 1241 17 8.038628e-02
#> 9 1242 18 7.064400e-02
#> 10 1243 19 6.037958e-02
#> 11 1244 20 5.042220e-02
#> 12 1245 21 4.129538e-02
#> 13 1246 22 3.327159e-02
#> 14 1247 23 2.643959e-02
#> 15 1248 24 2.076722e-02
#> 16 1249 25 1.615214e-02
#> 17 1250 26 1.245872e-02
#> 18 1251 27 9.542758e-03
#> 19 1252 28 7.266294e-03
#> 20 1253 29 5.505594e-03
#> 21 1254 30 4.154352e-03
#> 22 1255 31 3.124045e-03
#> 23 1256 32 2.342677e-03
#> 24 1257 33 1.752749e-03
#> 25 1258 34 1.309002e-03
#> 26 1259 35 9.762245e-04
#> 27 1260 36 7.272799e-04
#> 28 1261 37 5.414149e-04
#> 29 1262 38 4.028596e-04
#> 30 1263 39 2.996922e-04
#> 31 1264 40 2.229393e-04
#> 32 1265 41 1.658698e-04
#> 33 1266 42 1.234492e-04
#> 34 1267 43 9.192023e-05
#> 35 1268 44 6.848429e-05
#> 36 1269 45 5.105942e-05
#> 37 1270 46 3.809853e-05
#> 38 1271 47 2.845283e-05
#> 39 1272 48 2.126964e-05
#> 40 1273 49 1.591626e-05
#> 41 1274 50 1.192322e-05
#> 42 1275 51 8.942096e-06
#> 43 1276 52 6.714252e-06
#> 44 1277 53 5.047602e-06
#> 45 1278 54 3.799408e-06
#> 46 1279 55 2.863535e-06
#> 47 1280 56 2.161002e-06
#> 48 1281 57 1.632988e-06
#> 49 1282 58 1.235643e-06
#> 50 1283 59 9.362498e-07
#> 51 1284 60 7.103687e-07
#> 52 1285 61 5.397257e-07
#> 53 1286 62 4.106413e-07
#> 54 1287 63 3.128631e-07
#> 55 1288 64 2.386985e-07
#> 56 1289 65 1.823682e-07
#> 57 1290 66 1.395252e-07
#> 58 1291 67 1.068956e-07
#> 59 1292 68 8.201055e-08
#> 60 1293 69 6.300581e-08
#> 61 1294 70 4.847197e-08
#> 62 1295 71 3.734200e-08
#> 63 1296 72 2.880707e-08
#> 64 1297 73 2.225318e-08
#> 65 1298 74 1.721367e-08
#> 66 1299 75 1.333338e-08
#> 67 1300 76 1.034162e-08
#> 68 1301 77 8.031835e-09
#> 69 1302 78 6.246191e-09
#> 70 1303 79 4.863914e-09
#> 71 1304 80 3.792475e-09
#> 72 1305 81 2.960884e-09
#> 73 1306 82 2.314610e-09
#> 74 1307 83 1.811705e-09
#> 75 1308 84 1.419861e-09
#> 76 1309 85 1.114164e-09
#> 77 1310 86 8.753705e-10
#> 78 1311 87 6.886052e-10
#> 79 1312 88 5.423498e-10
#> 80 1313 89 4.276761e-10
#> 81 1314 90 3.376542e-10
#> 82 1315 91 2.668986e-10
#> 83 1316 92 2.112190e-10
#> 84 1317 93 1.673507e-10
#> 85 1318 94 1.327473e-10
#> 86 1319 95 1.054198e-10
#> 87 1320 96 8.381333e-11
#> 88 1321 97 6.671042e-11
#> 89 1322 98 5.315687e-11
#> 90 1323 99 4.240389e-11
#> 91 1324 100 3.386323e-11
#> 92 1325 101 2.707215e-11
#> 93 1326 102 2.166629e-11
#> 94 1327 103 1.735839e-11
#> 95 1328 104 1.392172e-11
#> 96 1329 105 1.117714e-11
#> 97 1330 106 8.982951e-12
#> 98 1331 107 7.226918e-12
#> 99 1332 108 5.820081e-12
#> 100 1333 109 4.691834e-12
#> 101 1334 110 3.786080e-12