
Simple search and citation of occurrences
Hannah L. Owens
Cory Merow
Brian Maitner
Jamie M. Kass
Vijay Barve
Robert Guralnick
2023-12-04
Source:vignettes/a_Simple.Rmd
a_Simple.Rmd
Introduction
We have entered the age of data-intensive scientific discovery. As data sets increase in complexity and heterogeneity, we must preserve the cycle of data citation from primary data sources to aggregating databases to research products and back to primary data sources. The citation cycle keeps science transparent, but it is also key to supporting primary providers by documenting the use of their data. The Global Biodiversity Information Facility (GBIF), Botanical Information and Ecology Network (BIEN), and other data aggregators have made great strides in harvesting citation data from research products and linking them back to primary data providers. However, this only works if those that publish research products cite primary data sources in the first place. We developed occCite
, a set of R
-based tools for downloading, managing, and citing biodiversity data, to advance toward the goal of closing the data provenance cycle. These tools preserve links between occurrence data and primary providers once researchers download aggregated data, and facilitate the citation of primary data providers in research papers.
The occCite
workflow follows a three-step process. First, the user inputs one or more taxonomic names (or a phylogeny). occCite
then rectifies these names by checking them against one or more taxonomic databases, which can be specified by the user (see the Global Names List). The results of the taxonomic rectification are then kept in an occCiteData
object in local memory. Next, occCite
takes the occCiteData
object and user-defined search parameters to query BIEN (through rbien
) and/or GBIF(through rGBIF
) for records. The results are appended to the occCiteData
object, along with metadata on the search. Finally, the user can pass the occCiteData
object to occCitation
, which compiles citations for the primary providers, database aggregators, and R
packages used to build the dataset.
Future iterations of occCite
will track citation data through the data cleaning process and provide a series of visualizations on raw query results and final data sets. It will also provide data citations in a format congruent with best-practice recommendations for large biodiversity data sets. Based on these data citation tools, we will also propose a new set of standards for citing primary biodiversity data in published research articles that provides due credit to contributors and allows them to track the use of their work. Keep checking back!
Setup
If you plan to query GBIF, you will need to provide them with your user login information. We have provided a dummy login below to show you the format. You will need to provide actual account information. This is because you will actually be downloading all of the records available for the species using occ_download()
, instead of getting results from occ_search()
, which has a hard limit of 100,000 occurrences.
library(occCite);
#Creating a GBIF login
GBIFLogin <- GBIFLoginManager(user = "occCiteTester",
email = "****@yahoo.com",
pwd = "12345")
Performing a simple search
The basics
At its simplest, occCite
allows you to search for occurrences for a single species. The taxonomy of the user-specified species will be verified using EOL and NCBI taxonomies by default.
# Simple search
mySimpleOccCiteObject <- occQuery(x = "Protea cynaroides",
datasources = c("gbif", "bien"),
GBIFLogin = GBIFLogin,
GBIFDownloadDirectory =
system.file('extdata/', package='occCite'),
checkPreviousGBIFDownload = T)
Here is what the GBIF results look like:
# GBIF search results
head(mySimpleOccCiteObject@occResults$`Protea cynaroides`$GBIF$OccurrenceTable)
## name longitude latitude coordinateUncertaintyInMeters day month
## 1 Protea cynaroides 18.43928 -33.95440 8 17 2
## 2 Protea cynaroides 22.12754 -33.91561 4 11 2
## 3 Protea cynaroides 18.43927 -33.95429 8 17 2
## 4 Protea cynaroides 18.43254 -34.29275 31 6 2
## 5 Protea cynaroides 18.42429 -34.02934 2167 10 2
## 6 Protea cynaroides 18.43529 -34.10545 2 8 2
## year Dataset
## 1 2022 iNaturalist Research-grade Observations
## 2 2022 iNaturalist Research-grade Observations
## 3 2022 iNaturalist Research-grade Observations
## 4 2022 iNaturalist Research-grade Observations
## 5 2022 iNaturalist Research-grade Observations
## 6 2022 iNaturalist Research-grade Observations
## DatasetKey DataService
## 1 50c9509d-22c7-4a22-a47d-8c48425ef4a7 GBIF
## 2 50c9509d-22c7-4a22-a47d-8c48425ef4a7 GBIF
## 3 50c9509d-22c7-4a22-a47d-8c48425ef4a7 GBIF
## 4 50c9509d-22c7-4a22-a47d-8c48425ef4a7 GBIF
## 5 50c9509d-22c7-4a22-a47d-8c48425ef4a7 GBIF
## 6 50c9509d-22c7-4a22-a47d-8c48425ef4a7 GBIF
And here are the BIEN results:
#BIEN search results
head(mySimpleOccCiteObject@occResults$`Protea cynaroides`$BIEN$OccurrenceTable)
## name longitude latitude coordinateUncertaintyInMeters day month
## 1 Protea cynaroides 19.14767 -33.7137 NA 30 1
## 2 Protea cynaroides 18.62500 -32.6250 NA 24 10
## 3 Protea cynaroides 19.12500 -34.3750 NA 22 7
## 4 Protea cynaroides 19.62500 -34.6250 NA 10 4
## 5 Protea cynaroides 19.37500 -33.1250 NA 30 3
## 6 Protea cynaroides 19.37500 -34.1250 NA 12 3
## year Dataset DatasetKey DataService
## 1 1828 MNHN 4620 BIEN
## 2 1954 SANBI 3318 BIEN
## 3 1967 SANBI 3318 BIEN
## 4 1979 SANBI 3318 BIEN
## 5 1978 SANBI 3318 BIEN
## 6 1962 SANBI 3318 BIEN
There is also a summary method for occCite
objects with some basic information about your search.
summary(mySimpleOccCiteObject)
## Warning in as.character.POSIXt(as.POSIXlt(x), ...): as.character(td, ..) no
## longer obeys a 'format' argument; use format(td, ..) ?
##
## OccCite query occurred on: 2022-08-09
##
## User query type: User-supplied list of taxa.
##
## Sources for taxonomic rectification: GBIF Backbone Taxonomy
##
##
## Taxonomic cleaning results:
##
## Input Name Best Match
## 1 Protea cynaroides Protea cynaroides (L.) L. L. (L.)
## Taxonomic Databases w/ Matches
## 1 GBIF Backbone Taxonomy
##
## Sources for occurrence data: gbif, bien
##
## Species Occurrences Sources
## 1 Protea cynaroides (L.) L. L. (L.) 2334 17
##
## GBIF dataset DOIs:
##
## Species GBIF Access Date GBIF DOI
## 1 Protea cynaroides (L.) L. L. (L.) 2022-03-02 10.15468/dl.ztbx8c
If you want to visualize the results of your search, you can use the plot
method on occCite
objects to generate several kinds of summary plots.
plot(mySimpleOccCiteObject)
Simple citations
After doing a search for occurrence points, you can use occCitation()
to generate citations for primary biodiversity databases, as well as database aggregators. Note: Currently, GBIF and BIEN are the only aggregators for which citations are supported.
#Get citations
mySimpleOccCitations <- occCitation(mySimpleOccCiteObject)
Here is a simple way of generating a formatted citation document from the results of occCitation()
.
print(mySimpleOccCitations)
## Writing 5 Bibtex entries ... OK
## Results written to file 'temp.bib'
## AFFOUARD A, JOLY A, LOMBARDO J, CHAMP J, GOEAU H, CHOUET M, GRESSE H, BONNET P (2023). Pl@ntNet observations. Version 1.8. Pl@ntNet. https://doi.org/10.15468/gtebaa. Accessed via GBIF on 2022-03-02.
## AFFOUARD A, JOLY A, LOMBARDO J, CHAMP J, GOEAU H, CHOUET M, GRESSE H, BOTELLA C, BONNET P (2023). Pl@ntNet automatically identified occurrences. Version 1.8. Pl@ntNet. https://doi.org/10.15468/mma2ec. Accessed via GBIF on 2022-03-02.
## Capers R (2014). CONN. University of Connecticut. https://doi.org/10.15468/w35jmd. Accessed via GBIF on 2022-03-02.
## Chamberlain, S., Barve, V., Mcglinn, D., Oldoni, D., Desmet, P., Geffert, L., Ram, K. (2023). rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.7.8.1. https://CRAN.R-project.org/package=rgbif.
## Chamberlain, S., Boettiger, C. (2017). R Python, and Ruby clients for GBIF species occurrence data. PeerJ PrePrints.
## de Vries H, Lemmens M (2023). Observation.org, Nature data from around the World. Observation.org. https://doi.org/10.15468/5nilie. Accessed via GBIF on 2022-03-02.
## Fatima Parker-Allie, Ranwashe F (2018). PRECIS. South African National Biodiversity Institute. https://doi.org/10.15468/rckmn2. Accessed via GBIF on 2022-03-02.
## iNaturalist contributors, iNaturalist (2023). iNaturalist Research-grade Observations. iNaturalist.org. https://doi.org/10.15468/ab3s5x. Accessed via GBIF on 2022-03-02.
## Maitner, B. (2023). . R package version 1.2.6. NA.
## Missouri Botanical Garden,Herbarium. Accessed via BIEN on NA.
## MNHN, Chagnoux S (2023). The vascular plants collection (P) at the Herbarium of the Muséum national d'Histoire Naturelle (MNHN - Paris). Version 69.339. MNHN - Museum national d'Histoire naturelle. https://doi.org/10.15468/nc6rxy. Accessed via GBIF on 2022-03-02.
## MNHN. Accessed via BIEN on NA.
## naturgucker.de. naturgucker. https://doi.org/10.15468/uc1apo. Accessed via GBIF on 2022-03-02.
## Owens, H., Merow, C., Maitner, B., Kass, J., Barve, V., Guralnick, R. (2023). occCite: Querying and Managing Large Biodiversity Occurrence Datasets. R package version 0.5.7. https://CRAN.R-project.org/package=occCite.
## Ranwashe F (2023). Botanical Database of Southern Africa (BODATSA): Botanical Collections. Version 1.20. South African National Biodiversity Institute. https://doi.org/10.15468/2aki0q. Accessed via GBIF on 2022-03-02.
## Rob Cubey (2022). Royal Botanic Garden Edinburgh Living Plant Collections (E). Royal Botanic Garden Edinburgh. https://doi.org/10.15468/bkzv1l. Accessed via GBIF on 2022-03-02.
## SANBI. Accessed via BIEN on NA.
## Senckenberg (2020). African Plants - a photo guide. https://doi.org/10.15468/r9azth. Accessed via GBIF on 2022-03-02.
## Team}, {.C. (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
## Teisher J, Stimmel H (2023). Tropicos MO Specimen Data. Missouri Botanical Garden. https://doi.org/10.15468/hja69f. Accessed via GBIF on 2022-03-02.
## Tela Botanica. Carnet en Ligne. https://doi.org/10.15468/rydcn2. Accessed via GBIF on 2022-03-02.
## UConn. Accessed via BIEN on NA.
Simple Taxonomic Rectification
In the simplest of searches, such as the one above, the taxonomy of your input species name is automatically rectified through the occCite
function studyTaxonList()
using gnr_resolve()
from the taxize
R
package. If you would like to change the source of the taxonomy being used to rectify your species names, you can specify as many taxonomic repositories as you like from the Global Names Index (GNI). The complete list of GNI repositories can be found here.
studyTaxonList()
chooses the taxonomic names closest to those being input and documents which taxonomic repositories agreed with those names. studyTaxonList()
instantiates an occCiteData
object the same way occQuery()
does. This object can be passed into occQuery()
to perform your occurrence data search.
#Rectify taxonomy
myTROccCiteObject <- studyTaxonList(x = "Protea cynaroides",
datasources = c("National Center for Biotechnology Information",
"Encyclopedia of Life",
"Integrated Taxonomic Information SystemITIS"))
myTROccCiteObject@cleanedTaxonomy
## Input Name Best Match
## 1 Protea cynaroides Protea cynaroides
## Taxonomic Databases w/ Matches
## 1 National Center for Biotechnology Information; Encyclopedia of Life
For advanced features, please refer to vignette("Advanced", package = "occCite")
.