Skip to contents

Following the template in OpenAlex’s oa-percentage tutorial, this vignette uses openalexR to answer:

How many of recent journal articles from the University of Pennsylvania are open access? And how many aren’t?

We first need to find the openalex.id for University of Pennsylvania. We can do this by fetching for the institutions entity and put “University of Pennsylvania” in display_name or display_name.search:

oa_fetch(
  entity = "inst", # same as "institutions"
  display_name.search = "\"University of Pennsylvania\""
) %>%
  select(display_name, ror) %>% 
  knitr::kable()
display_name ror
University of Pennsylvania https://ror.org/00b30xv10
California University of Pennsylvania https://ror.org/01spssf70
Hospital of the University of Pennsylvania https://ror.org/02917wp91
University of Pennsylvania Health System https://ror.org/04h81rw26
Indiana University of Pennsylvania https://ror.org/0511cmw96
Cheyney University of Pennsylvania https://ror.org/02nckwn80
University of Pennsylvania Press https://ror.org/03xwa9562

We will use the first ror, 00b30xv10, as one of the filters for our query.

Alternatively, we could go to the autocomplete endpoint at https://explore.openalex.org/ to search for “University of Pennsylvania” and find the ror there!

All other filters are straightforward and explained in detailed in the original jupyter notebook tutorial. The only difference here is that, instead of grouping by is_oa, we’re interested in the “trend” over the years, so we’re going to group by publication_year, and perform the query twice, one for is_oa = "true" and one for is_oa = "false" .

open_access <- oa_fetch(
  entity = "works",
  institutions.ror = "00b30xv10",
  type = "article",
  from_publication_date = "2012-08-24",
  is_paratext = "false",
  is_oa = "true",
  group_by = "publication_year"
)

closed_access <- oa_fetch(
  entity = "works",
  institutions.ror = "00b30xv10",
  type = "article",
  from_publication_date = "2012-08-24",
  is_paratext = "false",
  is_oa = "false",
  group_by = "publication_year"
)

uf_df <- closed_access %>%
  select(- key_display_name) %>%
  full_join(open_access, by = "key", suffix = c("_ca", "_oa")) 

uf_df
#>     key count_ca key_display_name count_oa
#> 1  2012     1013             2012     1318
#> 2  2013     3797             2013     4991
#> 3  2014     3975             2014     5177
#> 4  2015     4023             2015     5313
#> 5  2016     3705             2016     5512
#> 6  2017     3450             2017     5892
#> 7  2018     3833             2018     6473
#> 8  2019     3981             2019     6906
#> 9  2020     4115             2020     8229
#> 10 2021     3907             2021     8481
#> 11 2022     3751             2022     8090
#> 12 2023     4369             2023     7533
#> 13 2024     4419             2024     4029
#> 14 2025        2             <NA>       NA

Finally, we compare the number of open vs. closed access articles over the years:

uf_df %>%
  filter(key <= 2021) %>% # we do not yet have complete data for 2022 and after
  pivot_longer(cols = starts_with("count")) %>%
  mutate(
    year = as.integer(key),
    is_oa = recode(
      name,
      "count_ca" = "Closed Access",
      "count_oa" = "Open Access"
    ),
    label = if_else(key < 2021, NA_character_, is_oa)
  ) %>% 
  select(year, value, is_oa, label) %>%
  ggplot(aes(x = year, y = value, group = is_oa, color = is_oa)) +
  geom_line(size = 1) +
  labs(
    title = "University of Pennsylvania's progress towards Open Access",
    x = NULL, y = "Number of journal articles") +
  scale_color_brewer(palette = "Dark2", direction = -1) +
  scale_x_continuous(breaks = seq(2010, 2024, 2)) +
  geom_text(aes(label = label), nudge_x = 0.1, hjust = 0) +
  coord_cartesian(xlim = c(NA, 2022.5)) +
  guides(color = "none")