Skip to contents

Following the template in OpenAlex’s oa-percentage tutorial, this vignette uses openalexR to answer:

How many of recent journal articles from the University of Pennsylvania are open access? And how many aren’t?

We first need to find the openalex.id for University of Pennsylvania. We can do this by fetching for the institutions entity and put “University of Pennsylvania” in display_name or display_name.search:

oa_fetch(
  entity = "inst", # same as "institutions"
  display_name.search = "\"University of Pennsylvania\""
) %>%
  select(display_name, ror) %>% 
  knitr::kable()
display_name ror
University of Pennsylvania https://ror.org/00b30xv10
California University of Pennsylvania https://ror.org/01spssf70
Hospital of the University of Pennsylvania https://ror.org/02917wp91
University of Pennsylvania Health System https://ror.org/04h81rw26
Indiana University of Pennsylvania https://ror.org/0511cmw96
Cheyney University of Pennsylvania https://ror.org/02nckwn80
University of Pennsylvania Press https://ror.org/03xwa9562

We will use the first ror, 00b30xv10, as one of the filters for our query.

Alternatively, we could go to the autocomplete endpoint at https://explore.openalex.org/ to search for “University of Pennsylvania” and find the ror there!

All other filters are straightforward and explained in detailed in the original jupyter notebook tutorial. The only difference here is that, instead of grouping by is_oa, we’re interested in the “trend” over the years, so we’re going to group by publication_year, and perform the query twice, one for is_oa = "true" and one for is_oa = "false" .

open_access <- oa_fetch(
  entity = "works",
  institutions.ror = "00b30xv10",
  type = "article",
  from_publication_date = "2012-08-24",
  is_paratext = "false",
  is_oa = "true",
  group_by = "publication_year"
)

closed_access <- oa_fetch(
  entity = "works",
  institutions.ror = "00b30xv10",
  type = "article",
  from_publication_date = "2012-08-24",
  is_paratext = "false",
  is_oa = "false",
  group_by = "publication_year"
)

uf_df <- closed_access %>%
  select(- key_display_name) %>%
  full_join(open_access, by = "key", suffix = c("_ca", "_oa")) 

uf_df
#>     key count_ca key_display_name count_oa
#> 1  2012     1098             2012     1478
#> 2  2013     3941             2013     5388
#> 3  2014     4163             2014     5613
#> 4  2015     4226             2015     5897
#> 5  2016     4160             2016     6195
#> 6  2017     3873             2017     6768
#> 7  2018     4389             2018     7347
#> 8  2019     4447             2019     7813
#> 9  2020     4589             2020     9338
#> 10 2021     4355             2021     9696
#> 11 2022     4514             2022     8924
#> 12 2023     5458             2023     7924
#> 13 2024     3937             2024     3112
#> 14 2025        1             <NA>       NA

Finally, we compare the number of open vs. closed access articles over the years:

uf_df %>%
  filter(key <= 2021) %>% # we do not yet have complete data for 2022 and after
  pivot_longer(cols = starts_with("count")) %>%
  mutate(
    year = as.integer(key),
    is_oa = recode(
      name,
      "count_ca" = "Closed Access",
      "count_oa" = "Open Access"
    ),
    label = if_else(key < 2021, NA_character_, is_oa)
  ) %>% 
  select(year, value, is_oa, label) %>%
  ggplot(aes(x = year, y = value, group = is_oa, color = is_oa)) +
  geom_line(size = 1) +
  labs(
    title = "University of Pennsylvania's progress towards Open Access",
    x = NULL, y = "Number of journal articles") +
  scale_color_brewer(palette = "Dark2", direction = -1) +
  scale_x_continuous(breaks = seq(2010, 2024, 2)) +
  geom_text(aes(label = label), nudge_x = 0.1, hjust = 0) +
  coord_cartesian(xlim = c(NA, 2022.5)) +
  guides(color = "none")