Following the template in OpenAlex’s oa-percentage tutorial, this vignette uses openalexR to answer:
How many of recent journal articles from the University of Pennsylvania are open access? And how many aren’t?
We first need to find the openalex.id
for University of Pennsylvania. We can do this by fetching for the
institutions entity
and put “University of
Pennsylvania” in display_name
or
display_name.search
:
oa_fetch(
entity = "inst", # same as "institutions"
display_name.search = "\"University of Pennsylvania\""
) %>%
select(display_name, ror) %>%
knitr::kable()
display_name | ror |
---|---|
University of Pennsylvania | https://ror.org/00b30xv10 |
California University of Pennsylvania | https://ror.org/01spssf70 |
Hospital of the University of Pennsylvania | https://ror.org/02917wp91 |
University of Pennsylvania Health System | https://ror.org/04h81rw26 |
Indiana University of Pennsylvania | https://ror.org/0511cmw96 |
University of Pennsylvania Press | https://ror.org/03xwa9562 |
Cheyney University of Pennsylvania | https://ror.org/02nckwn80 |
We will use the first ror, 00b30xv10, as one of the filters for our query.
Alternatively, we could go to the autocomplete endpoint at https://explore.openalex.org/ to search for “University of Pennsylvania” and find the ror there!
All other filters are straightforward and explained in detailed in
the original jupyter notebook tutorial.
The only difference here is that, instead of grouping by
is_oa
, we’re interested in the “trend” over the years, so
we’re going to group by publication_year
, and perform the
query twice, one for is_oa = "true"
and one for
is_oa = "false"
.
open_access <- oa_fetch(
entity = "works",
institutions.ror = "00b30xv10",
type = "article",
from_publication_date = "2012-08-24",
is_paratext = "false",
is_oa = "true",
group_by = "publication_year"
)
closed_access <- oa_fetch(
entity = "works",
institutions.ror = "00b30xv10",
type = "article",
from_publication_date = "2012-08-24",
is_paratext = "false",
is_oa = "false",
group_by = "publication_year"
)
uf_df <- closed_access %>%
select(- key_display_name) %>%
full_join(open_access, by = "key", suffix = c("_ca", "_oa"))
uf_df
#> key count_ca key_display_name count_oa
#> 1 2024 5913 2024 5587
#> 2 2023 4342 2023 7299
#> 3 2020 4286 2020 8104
#> 4 2015 4236 2015 5241
#> 5 2014 4180 2014 5097
#> 6 2013 4097 2013 4977
#> 7 2021 4062 2021 8208
#> 8 2019 4053 2019 6776
#> 9 2018 3984 2018 6331
#> 10 2022 3856 2022 7733
#> 11 2016 3807 2016 5360
#> 12 2017 3707 2017 5707
#> 13 2025 1158 2025 949
#> 14 2012 1112 2012 1418
Finally, we compare the number of open vs. closed access articles over the years:
uf_df %>%
filter(key <= 2021) %>% # we do not yet have complete data for 2022 and after
pivot_longer(cols = starts_with("count")) %>%
mutate(
year = as.integer(key),
is_oa = recode(
name,
"count_ca" = "Closed Access",
"count_oa" = "Open Access"
),
label = if_else(key < 2021, NA_character_, is_oa)
) %>%
select(year, value, is_oa, label) %>%
ggplot(aes(x = year, y = value, group = is_oa, color = is_oa)) +
geom_line(size = 1) +
labs(
title = "University of Pennsylvania's progress towards Open Access",
x = NULL, y = "Number of journal articles") +
scale_color_brewer(palette = "Dark2", direction = -1) +
scale_x_continuous(breaks = seq(2010, 2024, 2)) +
geom_text(aes(label = label), nudge_x = 0.1, hjust = 0) +
coord_cartesian(xlim = c(NA, 2022.5)) +
guides(color = "none")