Following the template in OpenAlex’s oa-percentage tutorial, this vignette uses openalexR to answer:
How many of recent journal articles from the University of Pennsylvania are open access? And how many aren’t?
We first need to find the openalex.id
for University of Pennsylvania. We can do this by fetching for the
institutions entity and put “University of
Pennsylvania” in display_name or
display_name.search:
oa_fetch(
entity = "inst", # same as "institutions"
display_name.search = "\"University of Pennsylvania\""
) %>%
select(display_name, ror) %>%
knitr::kable()| display_name | ror |
|---|---|
| University of Pennsylvania | https://ror.org/00b30xv10 |
| California University of Pennsylvania | https://ror.org/01spssf70 |
| Hospital of the University of Pennsylvania | https://ror.org/02917wp91 |
| University of Pennsylvania Health System | https://ror.org/04h81rw26 |
| Indiana University of Pennsylvania | https://ror.org/0511cmw96 |
| University of Pennsylvania Press | https://ror.org/03xwa9562 |
| Cheyney University of Pennsylvania | https://ror.org/02nckwn80 |
We will use the first ror, 00b30xv10, as one of the filters for our query.
Alternatively, we could go to the autocomplete endpoint at https://explore.openalex.org/ to search for “University of Pennsylvania” and find the ror there!
All other filters are straightforward and explained in detailed in
the original jupyter notebook tutorial.
The only difference here is that, instead of grouping by
is_oa, we’re interested in the “trend” over the years, so
we’re going to group by publication_year, and perform the
query twice, one for is_oa = "true" and one for
is_oa = "false" .
open_access <- oa_fetch(
entity = "works",
institutions.ror = "00b30xv10",
type = "article",
from_publication_date = "2012-08-24",
is_paratext = "false",
is_oa = "true",
group_by = "publication_year"
)
closed_access <- oa_fetch(
entity = "works",
institutions.ror = "00b30xv10",
type = "article",
from_publication_date = "2012-08-24",
is_paratext = "false",
is_oa = "false",
group_by = "publication_year"
)
uf_df <- closed_access %>%
select(- key_display_name) %>%
full_join(open_access, by = "key", suffix = c("_ca", "_oa"))
uf_df
#> key count_ca key_display_name count_oa
#> 1 2024 5735 2024 5767
#> 2 2025 4319 2025 3643
#> 3 2023 4292 2023 7315
#> 4 2020 4270 2020 8127
#> 5 2015 4229 2015 5249
#> 6 2014 4174 2014 5103
#> 7 2013 4090 2013 4986
#> 8 2021 4061 2021 8211
#> 9 2019 4048 2019 6779
#> 10 2018 3981 2018 6336
#> 11 2022 3851 2022 7739
#> 12 2016 3806 2016 5366
#> 13 2017 3702 2017 5715
#> 14 2012 1114 2012 1418Finally, we compare the number of open vs. closed access articles over the years:
uf_df %>%
filter(key <= 2021) %>% # we do not yet have complete data for 2022 and after
pivot_longer(cols = starts_with("count")) %>%
mutate(
year = as.integer(key),
is_oa = recode(
name,
"count_ca" = "Closed Access",
"count_oa" = "Open Access"
),
label = if_else(key < 2021, NA_character_, is_oa)
) %>%
select(year, value, is_oa, label) %>%
ggplot(aes(x = year, y = value, group = is_oa, color = is_oa)) +
geom_line(size = 1) +
labs(
title = "University of Pennsylvania's progress towards Open Access",
x = NULL, y = "Number of journal articles") +
scale_color_brewer(palette = "Dark2", direction = -1) +
scale_x_continuous(breaks = seq(2010, 2024, 2)) +
geom_text(aes(label = label), nudge_x = 0.1, hjust = 0) +
coord_cartesian(xlim = c(NA, 2022.5)) +
guides(color = "none")
