Skip to contents

Following the template in OpenAlex’s oa-percentage tutorial, this vignette uses openalexR to answer:

How many of recent journal articles from the University of Pennsylvania are open access? And how many aren’t?

We first need to find the openalex.id for University of Pennsylvania. We can do this by fetching for the institutions entity and put “University of Pennsylvania” in display_name or display_name.search:

oa_fetch(
  entity = "inst", # same as "institutions"
  display_name.search = "\"University of Pennsylvania\""
) %>%
  select(display_name, ror) %>% 
  knitr::kable()
display_name ror
University of Pennsylvania https://ror.org/00b30xv10
California University of Pennsylvania https://ror.org/01spssf70
Hospital of the University of Pennsylvania https://ror.org/02917wp91
University of Pennsylvania Health System https://ror.org/04h81rw26
Indiana University of Pennsylvania https://ror.org/0511cmw96
University of Pennsylvania Press https://ror.org/03xwa9562
Cheyney University of Pennsylvania https://ror.org/02nckwn80

We will use the first ror, 00b30xv10, as one of the filters for our query.

Alternatively, we could go to the autocomplete endpoint at https://explore.openalex.org/ to search for “University of Pennsylvania” and find the ror there!

All other filters are straightforward and explained in detailed in the original jupyter notebook tutorial. The only difference here is that, instead of grouping by is_oa, we’re interested in the “trend” over the years, so we’re going to group by publication_year, and perform the query twice, one for is_oa = "true" and one for is_oa = "false" .

open_access <- oa_fetch(
  entity = "works",
  institutions.ror = "00b30xv10",
  type = "article",
  from_publication_date = "2012-08-24",
  is_paratext = "false",
  is_oa = "true",
  group_by = "publication_year"
)

closed_access <- oa_fetch(
  entity = "works",
  institutions.ror = "00b30xv10",
  type = "article",
  from_publication_date = "2012-08-24",
  is_paratext = "false",
  is_oa = "false",
  group_by = "publication_year"
)

uf_df <- closed_access %>%
  select(- key_display_name) %>%
  full_join(open_access, by = "key", suffix = c("_ca", "_oa")) 

uf_df
#>     key count_ca key_display_name count_oa
#> 1  2012     1112             2012     1418
#> 2  2013     4100             2013     4976
#> 3  2014     4181             2014     5097
#> 4  2015     4236             2015     5239
#> 5  2016     3808             2016     5359
#> 6  2017     3707             2017     5707
#> 7  2018     3986             2018     6331
#> 8  2019     4054             2019     6772
#> 9  2020     4285             2020     8103
#> 10 2021     4062             2021     8203
#> 11 2022     3854             2022     7731
#> 12 2023     4346             2023     7286
#> 13 2024     5906             2024     5568
#> 14 2025      640             2025      523

Finally, we compare the number of open vs. closed access articles over the years:

uf_df %>%
  filter(key <= 2021) %>% # we do not yet have complete data for 2022 and after
  pivot_longer(cols = starts_with("count")) %>%
  mutate(
    year = as.integer(key),
    is_oa = recode(
      name,
      "count_ca" = "Closed Access",
      "count_oa" = "Open Access"
    ),
    label = if_else(key < 2021, NA_character_, is_oa)
  ) %>% 
  select(year, value, is_oa, label) %>%
  ggplot(aes(x = year, y = value, group = is_oa, color = is_oa)) +
  geom_line(size = 1) +
  labs(
    title = "University of Pennsylvania's progress towards Open Access",
    x = NULL, y = "Number of journal articles") +
  scale_color_brewer(palette = "Dark2", direction = -1) +
  scale_x_continuous(breaks = seq(2010, 2024, 2)) +
  geom_text(aes(label = label), nudge_x = 0.1, hjust = 0) +
  coord_cartesian(xlim = c(NA, 2022.5)) +
  guides(color = "none")