Create table summaries of predictNMBscreen
objects.
Usage
# S3 method for class 'predictNMBscreen'
summary(
object,
what = c("nmb", "inb", "cutpoints"),
inb_ref_col = NULL,
agg_functions = list(median = function(x) {
round(stats::median(x), digits = 2)
}, `95% CI` = function(x) {
paste0(round(stats::quantile(x, probs = c(0.025,
0.975)), digits = 1), collapse = " to ")
}),
rename_vector,
show_full_inputs = FALSE,
...
)
Arguments
- object
A
predictNMBscreen
object.- what
What to summarise: one of "nmb", "inb" or "cutpoints". Defaults to "nmb".
- inb_ref_col
Which cutpoint method to use as the reference strategy when calculating the incremental net monetary benefit. See
do_nmb_sim
for more information.- agg_functions
A named list of functions to use to aggregate the selected values. Defaults to the median and 95% interval.
- rename_vector
A named vector for renaming the methods in the summary. The values of the vector are the default names and the names given are the desired names in the output.
- show_full_inputs
A logical. Whether or not to include the inputs used for simulation alongside aggregations.
- ...
Additional, ignored arguments.
Details
Table summaries will be based on the what
argument.
Using "nmb" returns the simulated values for NMB, with no reference group;
"inb" returns the difference between simulated values for NMB and a set
strategy defined by inb_ref_col
; "cutpoints" returns the cutpoints
selected (0, 1).
Examples
# perform screen with increasing values of model discimination (sim_auc)
# \donttest{
get_nmb <- function() c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)
sim_screen_obj <- screen_simulation_inputs(
n_sims = 50, n_valid = 10000, sim_auc = seq(0.7, 0.9, 0.1),
event_rate = 0.1, fx_nmb_training = get_nmb, fx_nmb_evaluation = get_nmb,
cutpoint_methods = c("all", "none", "youden", "value_optimising")
)
summary(
sim_screen_obj,
rename_vector = c(
"Value_Optimising" = "value_optimising",
"Treat_None" = "none",
"Treat_All" = "all",
"Youden_Index" = "youden"
)
)
#> # A tibble: 3 × 9
#> sim_auc Treat_All_median `Treat_All_95% CI` Treat_None_median
#> <dbl> <dbl> <chr> <dbl>
#> 1 0.7 -1.2 -1.2 to -1.2 -0.4
#> 2 0.8 -1.2 -1.2 to -1.2 -0.4
#> 3 0.9 -1.2 -1.2 to -1.2 -0.4
#> # ℹ 5 more variables: `Treat_None_95% CI` <chr>, Youden_Index_median <dbl>,
#> # `Youden_Index_95% CI` <chr>, Value_Optimising_median <dbl>,
#> # `Value_Optimising_95% CI` <chr>
# }