Collect all pixel values of both vegetation index,
and Swir Transformed Reflectance, for a time series of images.
Prepare data.frame of all pairs of values
(as input for the optram_wetdry_coefficients
function)
Usage
optram_ndvi_str(STR_list, VI_list, output_dir = tempdir(), aoi = NULL)
Value
full_df, data.frame with 7 columns: X,Y,Date,Month,NDVI,STR,Density
and optionally a 7th column with feature ID values from the AOI polygon.
The columns Month, Density, Feature_ID can be used in
plot_vi_str_cloud()
function to color the points in the scatter plot
in various ways.
Note
Use the option max_tbl_size
(see optram_options
)
to limit size of the NDVI-STR data.frame.
With a large area of interest, and long time frame,
the number of data points can overrun the computation resources.
This parameter sets a total size of data.frame from the max_tbl_size
parameter, together with the number of image time slots in the time range.
In some cases (i.e. water surfaces) NDVI can have values
below zero. These pixels can be removed from the trapezoid
by setting rm.low.vi
option to TRUE.
The vegetation index column is named "NDVI" even though it can represent other vegetation indices, such as SAVI, or MSAVI.
Examples
VI_list <- list.files(system.file("extdata", "NDVI", package = "rOPTRAM"),
pattern = ".tif$", full.names = TRUE)
STR_list <- list.files(system.file("extdata", "STR", package = "rOPTRAM"),
pattern = ".tif$", full.names = TRUE)
full_df <- optram_ndvi_str(STR_list, VI_list)
#> Saved: 96360 rows of VI-STR data to: /tmp/RtmpQfv12R/VI_STR_data.rds
# Show structure of output data.frame
str(full_df)
#> 'data.frame': 96360 obs. of 8 variables:
#> $ x : num 34.9 34.9 34.9 34.9 34.9 ...
#> $ y : num 31.6 31.6 31.6 31.6 31.6 ...
#> $ VI : num 0.432 0.418 0.428 0.528 0.538 ...
#> $ STR : num 1.72 1.95 1.96 2.11 2.13 ...
#> $ Date : Date, format: "2022-11-11" "2022-11-11" ...
#> $ Tile : chr "T36RXV" "T36RXV" "T36RXV" "T36RXV" ...
#> $ Month : chr "11" "11" "11" "11" ...
#> $ Density: num 0.565 0.374 0.328 0.49 0.495 ...