authors_refine This function takes the author list output after the output has been synthesized for incorrect author matches. It contains a similarity score cutoff like read_authors. This however is to further constrain the list. New values ARE NOT created, instead it filters by the sim_score column in the output file.

authors_refine(review, prelim, sim_score = NULL, confidence = NULL)

Arguments

review

the `review` element from the list output by authors_clean

prelim

the `prelim` element from the list output by authors_clean

sim_score

similarity score cut off point. Number between 0-1.

confidence

confidence score cut off point. Number between 0 - 10.

Examples

## First gather the authors data.frame from authors_clean data(BITR) BITR_authors <- authors_clean(BITR)
#> #> Splitting author records
#> | | | 0% | |======= | 10% | | | 0% | |============== | 20% | | | 0% | |===================== | 30% | | | 0% | |============================ | 40% | | | 0% | |=================================== | 50% | | | 0% | |========================================== | 60% | | | 0% | |================================================= | 70% | | | 0% | |======================================================== | 80% | | | 0% | |=============================================================== | 90% | | | 0% | |======================================================================| 100%
#> #> Splitting addresses
#> | | | 0% | |===== | 7% | | | 0% | |========== | 14% | | | 0% | |=============== | 21% | | | 0% | |==================== | 29% | | | 0% | |========================= | 36% | | | 0% | |============================== | 43% | | | 0% | |=================================== | 50% | | | 0% | |======================================== | 57% | | | 0% | |============================================= | 64% | | | 0% | |================================================== | 71% | | | 0% | |======================================================= | 79% | | | 0% | |============================================================ | 86% | | | 0% | |================================================================= | 93% | | | 0% | |======================================================================| 100%
#> #> Matching authors
#> | | | 0% | |= | 2% | | | 0% | |=== | 4% | | | 0% | |==== | 5% | | | 0% | |===== | 7% | | | 0% | |====== | 9% | | | 0% | |======== | 11% | | | 0% | |========= | 13% | | | 0% | |========== | 15% | | | 0% | |=========== | 16% | | | 0% | |============= | 18% | | | 0% | |============== | 20% | | | 0% | |=============== | 22% | | | 0% | |================= | 24% | | | 0% | |================== | 25% | | | 0% | |=================== | 27% | | | 0% | |==================== | 29% | | | 0% | |====================== | 31% | | | 0% | |======================= | 33% | | | 0% | |======================== | 35% | | | 0% | |========================= | 36% | | | 0% | |=========================== | 38% | | | 0% | |============================ | 40% | | | 0% | |============================= | 42% | | | 0% | |=============================== | 44% | | | 0% | |================================ | 45% | | | 0% | |================================= | 47% | | | 0% | |================================== | 49% | | | 0% | |==================================== | 51% | | | 0% | |===================================== | 53% | | | 0% | |====================================== | 55% | | | 0% | |======================================= | 56% | | | 0% | |========================================= | 58% | | | 0% | |========================================== | 60% | | | 0% | |=========================================== | 62% | | | 0% | |============================================= | 64% | | | 0% | |============================================== | 65% | | | 0% | |=============================================== | 67% | | | 0% | |================================================ | 69% | | | 0% | |================================================== | 71% | | | 0% | |=================================================== | 73% | | | 0% | |==================================================== | 75% | | | 0% | |===================================================== | 76% | | | 0% | |======================================================= | 78% | | | 0% | |======================================================== | 80% | | | 0% | |========================================================= | 82% | | | 0% | |=========================================================== | 84% | | | 0% | |============================================================ | 85% | | | 0% | |============================================================= | 87% | | | 0% | |============================================================== | 89% | | | 0% | |================================================================ | 91% | | | 0% | |================================================================= | 93% | | | 0% | |================================================================== | 95% | | | 0% | |=================================================================== | 96% | | | 0% | |===================================================================== | 98% | | | 0% | |======================================================================| 100%
#> #> Pruning groupings...
BITR_review_df <- BITR_authors$review BITR_prelim_df <- BITR_authors$prelim ## If accepting the preliminary disambiguation from authors_clean without review: refine_df <- authors_refine(BITR_review_df, BITR_prelim_df, sim_score = 0.90, confidence = 5) ## Note that 'sim_score' and 'confidence' are optional arguments and are only ## required if changing the default values. refine_df <- authors_refine(BITR_review_df, BITR_prelim_df) ## If changes were made to groupID or authorID in the "_review.csv" file: ## then incorporate those changes in a text editor, save the corrections as a new file name, ## load in to R and run `authors_refine()` with the new corrections as the review arguement.