This vignette provides a quick tour of the R package.
Authenticate
First you should set up your own credentials, this should be done just once ever:
Which will look up your account on your browser and create a token and save it as default. From now on, on this R session on others we can use this authentication with:
auth_as("default")
Automatically rtweet will use that token in all the API queries it will do in the session.
If you want to set up a bot or collect a lot of information, please read the vignette("auth", "rtweet")
.
Search tweets
You can search tweets:
## search for 18000 tweets using the rstats hashtag
rstats <- search_tweets("#rstats", n = 100, include_rts = FALSE)
colnames(rstats)
#> [1] "created_at" "id"
#> [3] "id_str" "full_text"
#> [5] "truncated" "display_text_range"
#> [7] "entities" "metadata"
#> [9] "source" "in_reply_to_status_id"
#> [11] "in_reply_to_status_id_str" "in_reply_to_user_id"
#> [13] "in_reply_to_user_id_str" "in_reply_to_screen_name"
#> [15] "geo" "coordinates"
#> [17] "place" "contributors"
#> [19] "is_quote_status" "retweet_count"
#> [21] "favorite_count" "favorited"
#> [23] "retweeted" "possibly_sensitive"
#> [25] "lang" "quoted_status"
#> [27] "text" "favorited_by"
#> [29] "scopes" "display_text_width"
#> [31] "retweeted_status" "quoted_status_id"
#> [33] "quoted_status_id_str" "quoted_status_permalink"
#> [35] "quote_count" "timestamp_ms"
#> [37] "reply_count" "filter_level"
#> [39] "query" "withheld_scope"
#> [41] "withheld_copyright" "withheld_in_countries"
#> [43] "possibly_sensitive_appealable"
rstats[1:5, c("created_at", "text", "id_str")]
#> created_at
#> 1 2022-05-21 05:15:01
#> 2 2022-05-17 05:21:23
#> 3 2022-05-18 06:45:13
#> 4 2022-05-21 12:45:10
#> 5 2022-05-21 12:45:04
#> text
#> 1 #DataScience Theories, Models, #Algorithms, and Analytics: https://t.co/w704rhiLS8 (FREE PDF Download, 462 pages)\n—————\n#BigData #AI #MachineLearning #DataScientists #Mathematics #Statistics #Rstats #Coding #NetworkScience #NeuralNetworks #100DaysOfCode https://t.co/mncH2ANBoc
#> 2 FREE downloadable PDF eBooks, including this 475-page book >> R Programming Notes for Professionals — hints & tricks: https://t.co/GxrKsRLgYo\n—————\n#Coding #RStats #Statistics #BigData #DataScientists #MachineLearning #DataScience #100DaysOfCode https://t.co/vjyniFKQYp
#> 3 100+ Free #DataScience eBooks (downloadable PDF) for Beginners and Experts: https://t.co/TtASTAWfYG via @TheInsaneApp \n—————\n#100DaysOfCode #BigData #AI #MachineLearning #DeepLearning #Statistics #DataScientists #Python #DataMining #DataLiteracy #Rstats #DataViz #NLProc
#> 4 The Future of App Development- AR and VR! We Have Stepped into The Future of #AppDevelopment and have successfully completed several projects on #AR and #VR.\n\nhttps://t.co/BeZEJbeJUc\n#cheapappdevelopmentservices #AI #Python #Rstats #Rectajs #IoT #NLP #IIoT #ML #Serverless https://t.co/ZTJnYHSwE9
#> 5 How #AI is helping #healthcare to prevent the spread of infectious diseases?\n\nvia @analyticsinme @GersonRolim @intellimetri\n\n#business #ML #IIoT #innovation #IoT #DataScience #BigData #HealthTech #100DaysOfCode #python #fintech #WomenWhoCode #RStats #Nodejs #100DaysOfMLCode https://t.co/B09cLcpiEJ
#> id_str
#> 1 1527850420793663488
#> 2 1526402472264224771
#> 3 1526785956715671552
#> 4 1527963706646482945
#> 5 1527963680968777730
The include_rts = FALSE
excludes retweets from the search.
Twitter rate limits the number of calls to the endpoints you can do. See rate_limit()
and the rate limit section below. If your query requires more calls like the example below, simply set retryonratelimit = TRUE
and rtweet will wait for rate limit resets for you.
## search for 250,000 tweets containing the word data
tweets_peace <- search_tweets("peace", n = 250000, retryonratelimit = TRUE)
Search by geo-location, for example tweets in the English language sent from the United States.
# search for tweets sent from the US
# lookup_coords requires Google maps API key for maps outside usa, canada and world
geo_tweets <- search_tweets("lang:en", geocode = lookup_coords("usa"), n = 100)
geo_tweets[1:5, c("created_at", "text", "id_str", "lang", "place")]
#> created_at
#> 1 2022-05-21 12:49:57
#> 2 2022-05-21 12:49:56
#> 3 2022-05-21 12:49:54
#> NA <NA>
#> NA.1 <NA>
#> text
#> 1 @SkaterTone23 Cuban Linx not a classic? Ghostface doesn't have at least on Classic? Many call Liquid Swords one as well.
#> 2 agenda ? ctfu.
#> 3 @EstyBesti__ @braezzz_ The peeing 😫
#> NA <NA>
#> NA.1 <NA>
#> id_str lang
#> 1 1527964908528214016 en
#> 2 1527964906871574529 en
#> 3 1527964897753063424 en
#> NA <NA> <NA>
#> NA.1 <NA> <NA>
#> place
#> 1 NA, NA, NA, NA, NA, NA, 290f62c6f654e14f, https://api.twitter.com/1.1/geo/id/290f62c6f654e14f.json, city, Clemmons, Clemmons, NC, US, United States, -80.432988, -80.339893, -80.339893, -80.432988, 35.93042, 35.93042, 36.078123, 36.078123, Polygon, Polygon, Polygon, Polygon
#> 2 NA, NA, NA, NA, NA, NA, e4a0d228eb6be76b, https://api.twitter.com/1.1/geo/id/e4a0d228eb6be76b.json, city, Philadelphia, Philadelphia, PA, US, United States, -75.280284, -74.955712, -74.955712, -75.280284, 39.871811, 39.871811, 40.13792, 40.13792, Polygon, Polygon, Polygon, Polygon
#> 3 NA, NA, NA, NA, NA, NA, 5b80bc3c1421ec78, https://api.twitter.com/1.1/geo/id/5b80bc3c1421ec78.json, city, Chillicothe, Chillicothe, IL, US, United States, -89.524292, -89.4712031, -89.4712031, -89.524292, 40.890013, 40.890013, 40.931926, 40.931926, Polygon, Polygon, Polygon, Polygon
#> NA NULL
#> NA.1 NULL
You can check the location of these tweets with lat_lng()
. Or quickly visualize frequency of tweets over time using ts_plot()
(if ggplot2
is installed).
## plot time series of tweets
ts_plot(rstats) +
theme_minimal() +
theme(plot.title = element_text(face = "bold")) +
labs(
x = NULL, y = NULL,
title = "Frequency of #rstats Twitter statuses from past 9 days",
subtitle = "Twitter status (tweet) counts aggregated using three-hour intervals",
caption = "Source: Data collected from Twitter's REST API via rtweet"
)

plot of chunk plot1
Posting statuses
You can post tweets with:
post_tweet(paste0("My first tweet with #rtweet #rstats at ", Sys.time()))
#> Your tweet has been posted!
It can include media and alt text:
path_file <- tempfile(fileext = ".png")
png(filename = path_file)
plot(mpg ~ cyl, mtcars, col = gear, pch = gear)
dev.off()
#> png
#> 2
post_tweet("my first tweet with #rtweet with media #rstats", media = path_file, media_alt_text = "Plot of mtcars dataset, showing cyl vs mpg colored by gear. The lower cyl the higher the mpg is.")
#> Your tweet has been posted!
You can also reply to a previous tweet, retweet and provide additional information.
Get friends
Retrieve a list of all the accounts a user follows.
## get user IDs of accounts followed by R Foundation
R_foundation_fds <- get_friends("_R_Foundation")
R_foundation_fds
#> # A tibble: 31 × 2
#> from_id to_id
#> <chr> <chr>
#> 1 _R_Foundation 1448728978370535426
#> 2 _R_Foundation 889777924991307778
#> 3 _R_Foundation 1300656590
#> 4 _R_Foundation 1280779280579022848
#> 5 _R_Foundation 1229418786085888001
#> 6 _R_Foundation 1197874989367779328
#> 7 _R_Foundation 1102763906714554368
#> 8 _R_Foundation 1560929287
#> 9 _R_Foundation 46782674
#> 10 _R_Foundation 16284661
#> # … with 21 more rows
Using get_friends()
we can retrieve which users are being followed by the R Foundation.
Get followers
If you really want all the users that follow the account we can use get_followers()
:
R_foundation_flw <- get_followers("_R_Foundation", n = 30000,
retryonratelimit = TRUE)
#> Downloading multiple pages ===================>----------------------------------------
#> Downloading multiple pages =============================>------------------------------
#> Downloading multiple pages =======================================>--------------------
Note that the retryonratelimit
option is intended for when you need more queries than provided by Twitter on a given period. You might want to check with rate_limit()
how many does it provide for the endpoints you are using. If exceeded retryonratelimit
waits till the there are more calls available and then resumes the query.
Lookup users
As seen above we can use lookup_users()
to check their
# Look who is following R Foundation
R_foundation_fds_data <- lookup_users(R_foundation_fds$to_id, verbose = FALSE)
R_foundation_fds_data[, c("name", "screen_name", "created_at")]
#> name screen_name created_at
#> 1 R Contributors R_Contributors 2021-10-14 21:15:12
#> 2 Sebastian Meyer bastistician 2017-07-25 11:22:43
#> 3 Naras b_naras 2013-03-25 19:48:12
#> 4 useR! 2022 _useRconf 2020-07-08 10:22:55
#> 5 useR2021zrh useR2021zrh 2020-02-17 15:54:39
#> 6 useR2020muc useR2020muc 2019-11-22 14:50:55
#> 7 useR! 2020 useR2020stl 2019-03-05 03:52:58
#> 8 Roger Bivand RogerBivand 2013-07-01 18:19:42
#> 9 Henrik Bengtsson henrikbengtsson 2009-06-13 02:11:14
#> 10 Gabriela de Queiroz gdequeiroz 2008-09-14 18:55:29
#> 11 Edzer Pebesma edzerpebesma 2010-05-27 00:40:37
#> 12 Jeroen Ooms opencpu 2011-09-16 20:08:22
#> 13 Achim Zeileis AchimZeileis 2017-06-01 02:45:27
#> 14 Luke Tierney LukeTierney4 2012-09-18 21:13:08
#> 15 useR! 2019 UseR2019_Conf 2017-06-30 14:36:04
#> 16 Frank Harrell f2harrell 2017-01-16 22:23:47
#> 17 Martyn Plummer martyn_plummer 2016-11-11 09:51:11
#> 18 R Consortium RConsortium 2015-08-18 17:12:12
#> 19 useR!2017 useR_Brussels 2016-05-27 17:25:59
#> 20 Michael Lawrence lawremi 2010-12-18 23:55:17
#> 21 Douglas Bates BatesDmbates 2013-10-26 19:35:20
#> 22 Forwards R_Forwards 2016-04-05 13:25:54
#> 23 Heather Turner HeathrTurnr 2015-07-09 11:01:24
#> 24 Hadley Wickham hadleywickham 2009-08-27 01:34:46
#> 25 Dr Di Cook visnut 2009-07-24 14:46:57
#> 26 Julie josse JulieJosseStat 2015-12-18 11:29:16
#> 27 Martin Maechler MMaechler 2012-01-23 17:14:07
#> 28 Dirk Eddelbuettel eddelbuettel 2007-03-27 03:20:37
#> 29 Jenny Bryan JennyBryan 2013-10-31 19:32:37
#> 30 Thomas Lumley tslumley 2013-02-11 07:16:24
#> 31 Peter Dalgaard pdalgd 2013-11-19 21:53:08
# Look R Foundation followers
R_foundation_flw_data <- lookup_users(R_foundation_flw$from_id, verbose = FALSE)
R_foundation_flw_data[1:5, c("name", "screen_name", "created_at")]
#> name screen_name created_at
#> 1 gc gc00661087 2022-05-20 15:19:48
#> 2 Maggie Valdés maggieva86 2010-02-13 03:20:32
#> 3 adipofat adipofat 2011-12-18 15:50:28
#> 4 jon33 🌎🌖☀️🌌 Jonprades 2014-10-25 18:25:53
#> 5 Aquiles Cohen Llanes aqcohen 2007-09-10 03:24:28
We have now the information from those followed by the R Foundation and its followers. We can retrieve their latest tweets from these users:
tweets_data(R_foundation_fds_data)[, c("created_at", "text")]
#> created_at
#> 1 Thu May 19 14:22:05 +0000 2022
#> 2 Sat Apr 09 22:32:13 +0000 2022
#> 3 Wed Nov 10 19:50:31 +0000 2021
#> 4 Fri May 20 14:28:55 +0000 2022
#> 5 Mon May 24 08:21:14 +0000 2021
#> 6 Fri Apr 16 11:03:21 +0000 2021
#> 7 Mon Jan 18 17:36:22 +0000 2021
#> 8 Fri May 13 21:05:12 +0000 2022
#> 9 Sat May 21 00:31:07 +0000 2022
#> 10 Thu May 19 03:15:36 +0000 2022
#> 11 Wed May 18 12:46:17 +0000 2022
#> 12 Fri May 20 07:32:53 +0000 2022
#> 13 Fri May 20 16:18:41 +0000 2022
#> 14 Thu May 05 19:26:15 +0000 2022
#> 15 Mon Oct 21 18:24:03 +0000 2019
#> 16 Wed May 18 21:04:23 +0000 2022
#> 17 Thu May 12 16:22:52 +0000 2022
#> 18 Wed May 18 18:17:22 +0000 2022
#> 19 Tue Jan 23 11:36:09 +0000 2018
#> 20 Tue Apr 13 21:46:35 +0000 2021
#> 21 Wed Apr 06 13:20:30 +0000 2022
#> 22 Sat May 21 05:18:47 +0000 2022
#> 23 Thu May 19 14:31:14 +0000 2022
#> 24 Fri May 20 22:06:43 +0000 2022
#> 25 Sat May 21 07:39:14 +0000 2022
#> 26 Thu May 05 19:30:03 +0000 2022
#> 27 Wed May 18 21:57:50 +0000 2022
#> 28 Wed May 18 19:20:57 +0000 2022
#> 29 Thu May 19 19:06:43 +0000 2022
#> 30 Sat May 21 06:24:58 +0000 2022
#> 31 Fri May 20 19:55:44 +0000 2022
#> text
#> 1 You are welcome to join if you are only fluent in English: one of our examples will translate between standard and British English!
#> 2 RT @_R_Foundation: New #rstats blog entry from Deepayan Sarkar and Kurt Hornik: Enhancements to HTML Documentation\nhttps://t.co/jiL0SQshzI
#> 3 RT @StanfordDBDS: Apply by 11/26 to join the Stanford DBDS Inclusive #mentoring in #DataScience program, which connects diverse college stu…
#> 4 Pour contribuer à #useR2022, consultez notre page de parrainage. https://t.co/u1J5ZcLKnL #RStatsFR #diversité
#> 5 @NasrinAttar @useR2020stl Important Info for everyone: If you don't have funds to attend the conference, you can si… https://t.co/4rvj6UdsE2
#> 6 RT @_useRconf: It is a good time to remember some of our keydates!\n\n📆 2021-04-20. Registration opens.\n📆 2021-05-15. Early Bird registratio…
#> 7 Give us a follow at @_useRconf to stay updated on *all* future useR! conferences! #rstats https://t.co/902O1TmUOD
#> 8 RT @GdalOrg: GDAL 3.5.0 is released: https://t.co/5uhsqd5rIT
#> 9 @adamhsparks @nj_tierney Depends on the year, or possibly, the decade
#> 10 @DatosNinja @fourthbrainai @DeepLearningAI_ Thank you for the summary and for attending :)
#> 11 RT @openEO_Platform: 📢Attention #openEO Platform Users! 📡🛰️\nThe room for our User Consultation at #LPS22 has changed to room H-1-07. \n\nMark…
#> 12 Highlights of awesome new r-universe features in the rOpenSci newsletter! https://t.co/eFjbjNnO0g
#> 13 RT @VincentAB: {marginaleffects} 0.5.0 📦 is a 𝙗𝙞𝙜 release. It’s an easy and powerful way to interpret the results of 62+ classes of models…
#> 14 @henrikbengtsson @jimhester_ @tslumley @ekuber @Thoughtfulnz Nobody is suggesting removing that.\n\nBut neither pytho… https://t.co/krzDmvZ1XQ
#> 15 RT @erum2020_conf: Our program committee is working very hard on bringing the most brilliant speakers to #erum2020, and you can help! Whic…
#> 16 @stephensenn @nshejazi Handling of uncertainties is crucial. Even if sources of variation from the experimental de… https://t.co/lCpxqbVEte
#> 17 @EikoFried This is a fallacious argument. If you choose a one-sided tail based on the data, then your probability c… https://t.co/lmh9KGt2Yr
#> 18 RT @RugBauchi: Checkout this Meetup with Bauchi R User Group (BauchiRUG): https://t.co/KMX8OiMZy7\n\[email protected] @_R_Foundation @dsn_bauchi…
#> 19 RT @useR2018_conf: Registration is now open for useR! 2018 - See the registration page on https://t.co/m5oNAiKMAJ Let us know if you experi…
#> 20 The Data Science and Stat Computing department at @Genentech Research is hiring a group leader for our software eng… https://t.co/YQb5andktz
#> 21 @apreshill @hadleywickham To me an important feature is that the Jupyter back end supports Python, R, and Julia.
#> 22 RT @turingway: @batool664 and Iman Al Hasani shared a preview version of The Turing Way in Arabic! An amazing effort!\n\nThe work of the tran…
#> 23 RT @R_Contributors: 🎉The final session of the #CollabCampfires series is coming soon!\n\n🖥️Topic: How to Contribute to a Translation Team, in…
#> 24 RT @bmwiernik: I ❤️ the base #rstats pipe |>, but it has a few limitations compared to tidyverse %>%. So, I wrote the {pipebind} package 📦…
#> 25 @ellis2013nz @spc_cps Congrats Peter, very exciting!
#> 26 @hioberman @AchimZeileis @Natty_V2 @nj_tierney Yes thank you and good to know!
#> 27 RT @mcw_bern: Die Frage nach dem Bier in der @migros ist dein Bier!\nHeute können auch Menschen mit Alkoholproblemen in der Migros einkaufe…
#> 28 @gusl You are probably thinking of `deparse(substiture(var))`. Example in the screenshot. https://t.co/T8ilLqNjv8
#> 29 @henrikbengtsson @GaborCsardi what I'm seeing is that it's going to be easy for folks to write code that works on W… https://t.co/9O9TbCrnEt
#> 30 @newimprovedtom @GrumpyYetAmusin It's like saying Auckland is in the rear view mirror when you're in Ponsonby
#> 31 @Yojonasen @twhjerne Ikke vvs (langtfra!) men: Medmindre radiatorerne er seriekoblede, så jo. Man kan jo normalt og… https://t.co/t5Y2J7OGty
Search users
Search for 1,000 users with the rstats hashtag in their profile bios.
## search for users with #rstats in their profiles
useRs <- search_users("#rstats", n = 100, verbose = FALSE)
useRs[, c("name", "screen_name", "created_at")]
#> name screen_name created_at
#> 1 Rstats rstatstweet Wed Jun 27 03:45:02 +0000 2018
#> 2 R for Data Science rstats4ds Tue Dec 18 12:55:25 +0000 2018
#> 3 FC rSTATS FC_rstats Thu Feb 08 20:03:08 +0000 2018
#> 4 R Tweets rstats_tweets Thu Sep 17 16:12:09 +0000 2020
#> 5 #RStats Question A Day data_question Mon Oct 21 17:15:24 +0000 2019
#> 6 NBA in #rstats NbaInRstats Tue Nov 05 02:44:32 +0000 2019
#> 7 Data Science with R Rstats4Econ Sat Apr 21 02:37:12 +0000 2012
#> 8 Baseball with R BaseballRstats Sat Nov 02 15:07:05 +0000 2013
#> 9 Will steelRstats Tue Jul 23 14:48:00 +0000 2019
#> 10 LIRR Statistics (Unofficial) LIRRstats Tue Jan 24 23:31:55 +0000 2017
#> 11 GIS SE #rstats Robot GISStackExchR Sat Sep 05 11:48:39 +0000 2015
#> 12 100% That Enby EmRstats Wed May 09 05:24:50 +0000 2018
#> 13 CIIPHER CHARTS CIIPHERstats Tue Dec 15 12:59:27 +0000 2020
#> 14 Dublin R User Group RstatsDublin Sat Dec 20 11:37:27 +0000 2014
#> 15 josue rodriguez josueRstats Wed May 25 00:55:01 +0000 2016
#> 16 #rstats 🤖 rstatsvideo Fri May 28 10:56:12 +0000 2021
#> 17 RavensRstats RavensRstats Thu Aug 08 02:49:29 +0000 2019
#> 18 BuccaneeRstats BuccaneeRstats Wed Aug 07 00:57:09 +0000 2019
#> 19 βoston R Stats BostonRStats Mon Aug 05 00:55:14 +0000 2019
#> 20 LIBD rstats club LIBDrstats Tue Mar 06 21:53:30 +0000 2018
#> 21 cougR CougRstats Thu Aug 24 20:29:18 +0000 2017
#> 22 Martin Chan martin_rstats Fri Apr 26 09:55:12 +0000 2019
#> 23 #rstats data rstatsdata Thu May 25 21:39:40 +0000 2017
#> 24 Ethan is looking for a #rstats job EeethB Wed Jan 29 23:05:02 +0000 2020
#> 25 rstats tips rstats_tips Sat May 02 20:34:54 +0000 2015
#> 26 gaurav_RStats GRstats Thu Jan 09 17:18:56 +0000 2020
#> 27 Mike Konczal rortybomb Wed Jun 17 21:56:28 +0000 2009
#> 28 R posts you might have missed! icymi_r Sun Dec 08 10:33:40 +0000 2019
#> 29 David Robinson drob Wed Jun 10 22:36:18 +0000 2009
#> 30 Jenny Bryan JennyBryan Thu Oct 31 18:32:37 +0000 2013
#> 31 Soph SophieWarnes Sun Feb 26 12:58:58 +0000 2012
#> 32 Danielle Navarro djnavarro Wed Jan 27 10:35:43 +0000 2010
#> 33 David Smith revodavid Thu Apr 23 17:51:16 +0000 2009
#> [ reached 'max' / getOption("max.print") -- omitted 67 rows ]
If we want to know what have they tweeted about we can use tweets_data()
:
useRs_twt <- tweets_data(useRs)
useRs_twt[1:5, c("id_str", "created_at", "text")]
#> id_str created_at
#> 1 1527965627083653120 Sat May 21 10:52:48 +0000 2022
#> 2 1527963730264346624 Sat May 21 10:45:16 +0000 2022
#> 3 1526288244308070402 Mon May 16 19:47:29 +0000 2022
#> 4 1527960938879537152 Sat May 21 10:34:10 +0000 2022
#> 5 1527771174683435008 Fri May 20 22:00:07 +0000 2022
#> text
#> 1 RT @rtweet_test: my first tweet with #rtweet with media #rstats https://t.co/8i3JeP4r5t
#> 2 RT @mdancho84: I will never stop!\n\nDon’t get me wrong, I’ll use every machine learning algorithm under the Sun ☀️ to get best results.\n\nBut…
#> 3 @Bujara1985 transfer decisions being simiplfied to a binary decision when in reality they are a complex blend of pr… https://t.co/C4PZ9KPNaL
#> 4 RT @RLangPackage: rtext - For natural language processing and analysis of qualitative text coding structures which provide a way to bind to…
#> 5 intercept can be also specified as `y ~ x + 0` or `y ~ 0 + x`. #RStats #DataScience [TimeStamp:20052022220006]
Get timelines
Get the most recent tweets from R Foundation.
## get user IDs of accounts followed by R Foundation
R_foundation_tline <- get_timeline("_R_Foundation")
## plot the frequency of tweets for each user over time
plot <- R_foundation_tline |>
filter(created_at > "2017-10-29") |>
ts_plot(by = "month", trim = 1L) +
geom_point() +
theme_minimal() +
theme(
legend.title = element_blank(),
legend.position = "bottom",
plot.title = element_text(face = "bold")) +
labs(
x = NULL, y = NULL,
title = "Frequency of Twitter statuses posted by the R Foundation",
subtitle = "Twitter status (tweet) counts aggregated by month from October/November 2017",
caption = "Source: Data collected from Twitter's REST API via rtweet"
)
Get favorites
Get the 10 recently favorited statuses by R Foundation.
R_foundation_favs <- get_favorites("_R_Foundation", n = 10)
R_foundation_favs[, c("text", "created_at", "id_str")]
#> text
#> 1 We're into August, which hopefully means you've had time to enjoy content from #useR2020!\n\nPlease help us find out who participated in the conference and what you thought of it by answering our survey: https://t.co/HYLl6rMySc.
#> 2 Gret meeting of #useR2020 passing the torch to #useR2021! 🔥 \nThank you so much, everyone!🙏🏽\nParticularly,\n🌟@HeathrTurnr from @_R_Foundation \n🌟@HeidiBaya, @useR2020muc chair\n🌟@chrisprener & @jenineharris, @useR2020stl chairs\n🌟@murielburi & @whatsgoodio, @useR2021global chairs
#> 3 Also thanks to the @_R_Foundation, @R_Forwards, @RLadiesGlobal, MiR and many others in supporting us in this endeavour!
#> 4 Such an honour to be acknowledged this way at #useR2019. I'm happy that folks like @JulieJosseStat, @visnut, @hfcfrick, @_lacion_ and so many others have got on board with my ideas for the #rstats community and helped them come to fruition - even better than I could imagine. 💜 https://t.co/dg2Dh49tug
#> 5 R-3.4.4 Windows installer is on CRAN now: https://t.co/h35EcsIEuF https://t.co/7xko0aUS2w
#> 6 Gala dinner with a table with people in cosmology, finance, psychology, demography, medical doctor #useR2017 😊
#> 7 AMAZING #RLadies at #useR2017 💜🌍 inspiring #rstats work around the world https://t.co/pIPEorlkyl
#> 8 Fame at last: https://t.co/x4wIePKR6b -- it's always nice to get a bit of recognition! Coded in #rstats back in 2005, and it still runs.
#> 9 We are excited to let you know that the full Conference Program is online now. \nHave a look at https://t.co/mk5CCdK73m. #rstats #user2017
#> 10 . @statsYSS and @RSSGlasgow1 to hold joint event celebrating 20 years of Comprehensive R Archive (CRAN) & uses of R https://t.co/3nxZpYaXPD
#> created_at id_str
#> 1 Mon Aug 03 07:51:33 +0000 2020 1290193576169803776
#> 2 Thu Jul 16 15:14:25 +0000 2020 1283782043021774850
#> 3 Thu May 28 06:57:24 +0000 2020 1265899960228360195
#> 4 Fri Jul 12 16:36:27 +0000 2019 1149719180314316800
#> 5 Thu Mar 15 17:16:13 +0000 2018 974333459085672448
#> 6 Fri Jul 07 07:10:41 +0000 2017 883221715777720320
#> 7 Wed Jul 05 11:25:27 +0000 2017 882561056752754689
#> 8 Wed Jun 07 21:25:37 +0000 2017 872565232606081025
#> 9 Wed May 31 12:37:23 +0000 2017 869895581702946816
#> 10 Mon Apr 10 08:50:11 +0000 2017 851356625801707520
Get trends
Discover what’s currently trending in San Francisco.
world <- get_trends("world")
world
#> # A tibble: 50 × 9
#> trend url promoted_content query tweet_volume place woeid as_of
#> <chr> <chr> <lgl> <chr> <int> <chr> <int> <dttm>
#> 1 #渡邉理佐卒… http… NA %23%… 36580 Worl… 1 2022-05-21 10:58:47
#> 2 #AusVotes22 http… NA %23A… 45257 Worl… 1 2022-05-21 10:58:47
#> 3 #GOT7HOMECO… http… NA %23G… 1227068 Worl… 1 2022-05-21 10:58:47
#> 4 #maymuncice… http… NA %23m… NA Worl… 1 2022-05-21 10:58:47
#> 5 Foden http… NA Foden 25497 Worl… 1 2022-05-21 10:58:47
#> 6 Saka http… NA Saka 60749 Worl… 1 2022-05-21 10:58:47
#> 7 #GOT7_Homec… http… NA %23G… 477938 Worl… 1 2022-05-21 10:58:47
#> 8 Dutton http… NA Dutt… 15898 Worl… 1 2022-05-21 10:58:47
#> 9 IP67 Water … http… NA %22I… NA Worl… 1 2022-05-21 10:58:47
#> 10 Antony Green http… NA %22A… NA Worl… 1 2022-05-21 10:58:47
#> # … with 40 more rows, and 1 more variable: created_at <dttm>
Following users
You can follow users and unfollow them:
post_follow("_R_Foundation")
#> Response [https://api.twitter.com/1.1/friendships/create.json?notify=FALSE&screen_name=_R_Foundation]
#> Date: 2022-05-21 10:58
#> Status: 200
#> Content-Type: application/json;charset=utf-8
#> Size: 3.72 kB
post_unfollow_user("rtweet_test")
#> Response [https://api.twitter.com/1.1/friendships/destroy.json?notify=FALSE&screen_name=rtweet_test]
#> Date: 2022-05-21 10:58
#> Status: 200
#> Content-Type: application/json;charset=utf-8
#> Size: 3.3 kB
Muting users
You can mute and unmute users:
post_follow("rtweet_test", mute = TRUE)
post_follow("rtweet_test", mute = FALSE)
Blocking users
You can block users and unblock them:
user_block("RTweetTest1")
#> Response [https://api.twitter.com/1.1/blocks/create.json?screen_name=RTweetTest1]
#> Date: 2022-05-21 10:58
#> Status: 200
#> Content-Type: application/json;charset=utf-8
#> Size: 1.35 kB
user_unblock("RTweetTest1")
#> Response [https://api.twitter.com/1.1/blocks/destroy.json?screen_name=RTweetTest1]
#> Date: 2022-05-21 10:58
#> Status: 200
#> Content-Type: application/json;charset=utf-8
#> Size: 1.35 kB
Rate limits
Twitter sets a limited number of calls to their endpoints for different authentications (check vignette("auth", "rtweet")
to find which one is better for your use case). To consult those limits you can use rate_limt()
rate_limit()
#> # A tibble: 262 × 5
#> resource limit remaining reset_at reset
#> <chr> <int> <int> <dttm> <drtn>
#> 1 /lists/list 15 15 2022-05-21 13:13:49 15 mins
#> 2 /lists/:id/tweets&GET 900 900 2022-05-21 13:13:49 15 mins
#> 3 /lists/:id/followers&GET 180 180 2022-05-21 13:13:49 15 mins
#> 4 /lists/memberships 75 75 2022-05-21 13:13:49 15 mins
#> 5 /lists/:id&DELETE 300 300 2022-05-21 13:13:49 15 mins
#> 6 /lists/subscriptions 15 15 2022-05-21 13:13:49 15 mins
#> 7 /lists/members 900 900 2022-05-21 13:13:49 15 mins
#> 8 /lists/:id&GET 75 75 2022-05-21 13:13:49 15 mins
#> 9 /lists/subscribers/show 15 15 2022-05-21 13:13:49 15 mins
#> 10 /lists/:id&PUT 300 300 2022-05-21 13:13:49 15 mins
#> # … with 252 more rows
# Search only those related to followers
rate_limit("followers")
#> # A tibble: 5 × 5
#> resource limit remaining reset_at reset
#> <chr> <int> <int> <dttm> <drtn>
#> 1 /lists/:id/followers&GET 180 180 2022-05-21 13:13:49 15 mins
#> 2 /users/:id/followers 15 15 2022-05-21 13:13:49 15 mins
#> 3 /users/by/username/:username/followers 15 15 2022-05-21 13:13:49 15 mins
#> 4 /followers/ids 15 10 2022-05-21 13:05:01 6 mins
#> 5 /followers/list 15 15 2022-05-21 13:13:49 15 mins
The remaining column shows the number of times that you can call and endpoint (not the numbers of followers you can search). After a query the number should decrease until it is reset again.
If your queries return an error, check if you already exhausted your quota and try after the time on “reset_at”.
Stream tweets
Randomly sample (approximately 1%) from the live stream of all tweets.
## random sample for 30 seconds (default)
stream <- tempfile(fileext = ".json")
rt <- stream_tweets("rstats", file_name = stream)
Stream all geo enabled tweets from London for 15 seconds.
## stream tweets from london for 60 seconds
stream2 <- tempfile(fileext = ".json")
stream_london <- stream_tweets(lookup_coords("london, uk"), timeout = 15, file_name = stream2)
Stream all tweets mentioning #rstats for a week.
## stream london tweets for a week (60 secs x 60 mins * 24 hours * 7 days)
stream3 <- tempfile(fileext = ".json")
stream_tweets(
"#rstats",
timeout = 60 * 60 * 24 * 7,
file_name = stream3,
parse = FALSE
)
## read in the data as a tidy tbl data frame
rstats <- jsonlite::stream_in(stream3)
See the vignette on vignette("stream", "rtweet")
.
SessionInfo
To provide real examples the vignette is precomputed before submission. Also note that results returned by the API will change.
sessionInfo()
#> R version 4.2.0 (2022-04-22)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 20.04.4 LTS
#>
#> Matrix products: default
#> BLAS: /home/lluis/bin/R/4.2.0/lib/R/lib/libRblas.so
#> LAPACK: /home/lluis/bin/R/4.2.0/lib/R/lib/libRlapack.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=es_ES.UTF-8
#> [4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=es_ES.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=es_ES.UTF-8 LC_NAME=C LC_ADDRESS=C
#> [10] LC_TELEPHONE=C LC_MEASUREMENT=es_ES.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] stats graphics grDevices datasets utils methods base
#>
#> other attached packages:
#> [1] dplyr_1.0.9 ggplot2_3.3.6 rtweet_0.7.0.9024 knitr_1.39
#> [5] BiocManager_1.30.17 cyclocomp_1.1.0 testthat_3.1.4 devtools_2.4.3
#> [9] usethis_2.1.5
#>
#> loaded via a namespace (and not attached):
#> [1] prettyunits_1.1.1 ps_1.7.0 assertthat_0.2.1 rprojroot_2.0.3
#> [5] digest_0.6.29 utf8_1.2.2 mime_0.12 R6_2.5.1
#> [9] evaluate_0.15 highr_0.9 httr_1.4.3 pillar_1.7.0
#> [13] rlang_1.0.2 progress_1.2.2 curl_4.3.2 rstudioapi_0.13
#> [17] callr_3.7.0 pkgdown_2.0.3 rmarkdown_2.14 desc_1.4.1
#> [21] labeling_0.4.2 stringr_1.4.0 bit_4.0.4 munsell_0.5.0
#> [25] compiler_4.2.0 xfun_0.31 pkgconfig_2.0.3 askpass_1.1
#> [29] pkgbuild_1.3.1 htmltools_0.5.2 openssl_2.0.0 tidyselect_1.1.2
#> [33] tibble_3.1.7 fansi_1.0.3 crayon_1.5.1 withr_2.5.0
#> [37] brio_1.1.3 grid_4.2.0 jsonlite_1.8.0 gtable_0.3.0
#> [41] lifecycle_1.0.1 DBI_1.1.2 magrittr_2.0.3 scales_1.2.0
#> [45] cli_3.3.0 stringi_1.7.6 cachem_1.0.6 farver_2.1.0
#> [49] fs_1.5.2 remotes_2.4.2 ellipsis_0.3.2 generics_0.1.2
#> [53] vctrs_0.4.1 tools_4.2.0 bit64_4.0.5 glue_1.6.2
#> [57] purrr_0.3.4 hms_1.1.1 processx_3.5.3 pkgload_1.2.4
#> [61] fastmap_1.1.0 yaml_2.3.5 colorspace_2.0-3 sessioninfo_1.2.2
#> [65] memoise_2.0.1 bspm_0.3.9