Get Twitter trends data.
get_trends( woeid = 1, lat = NULL, lng = NULL, exclude_hashtags = FALSE, token = NULL, parse = TRUE )
woeid | Numeric, WOEID (Yahoo! Where On Earth ID) or character
string of desired town or country. Users may also supply latitude
and longitude coordinates to fetch the closest available trends
data given the provided location. Latitude/longitude coordinates
should be provided as WOEID value consisting of 2 numeric values
or via one latitude value and one longitude value (to the
appropriately named parameters). To browse all available trend
places, see |
---|---|
lat | Optional alternative to WOEID. Numeric, latitude in degrees. If two coordinates are provided for WOEID, this function will coerce the first value to latitude. |
lng | Optional alternative to WOEID. Numeric, longitude in degrees. If two coordinates are provided for WOEID, this function will coerce the second value to longitude. |
exclude_hashtags | Logical, indicating whether or not to exclude hashtags. Defaults to FALSE--meaning, hashtags are included in returned trends. |
token | Every user should have their own Oauth (Twitter API) token. By
default |
parse | Logical, indicating whether or not to parse return trends data. Defaults to true. |
Tibble data frame of trends data for a given geographical area.
Other trends:
trends_available()
if (FALSE) { ## Retrieve available trends trends <- trends_available() trends ## Store WOEID for Worldwide trends worldwide <- trends$woeid[grep("world", trends$name, ignore.case = TRUE)[1]] ## Retrieve worldwide trends datadata ww_trends <- get_trends(worldwide) ## Preview trends data ww_trends ## Retrieve trends data using latitude, longitude near New York City nyc_trends <- get_trends_closest(lat = 40.7, lng = -74.0) ## should be same result if lat/long supplied as first argument nyc_trends <- get_trends_closest(c(40.7, -74.0)) ## Preview trends data nyc_trends ## Provide a city or location name using a regular expression string to ## have the function internals do the WOEID lookup/matching for you (luk <- get_trends("london")) }