centroid_dyad calculates the centroid (mean location) of a dyad in each
observation identified by edge_nn or edge_dist. The function expects an
edge-list generated by edge_nn or edge_dist and a data.table with
relocation data appended with a timegroup column from group_times.
Relocation data should be in two columns representing the X and Y
coordinates, or in a geometry column prepared by the helper function
get_geometry().
Usage
centroid_dyad(
edges = NULL,
DT = NULL,
id = NULL,
coords = NULL,
crs = NULL,
timegroup = "timegroup",
geometry = "geometry"
)Arguments
- edges
edge-list generated generated by
edge_distoredge_nn, with dyad ID column generated bydyad_id- DT
input data.table with timegroup column generated with
group_timesmatching the input data.table used to generate the edge list withedge_nnoredge_dist- id
character string of ID column name
- coords
character vector of X coordinate and Y coordinate column names. Note: the order is assumed X followed by Y column names
- crs
numeric or character defining the coordinate reference system to be passed to sf::st_crs. For example, either
crs = "EPSG:32736"orcrs = 32736. Used only if coords are provided, see details under Interface- timegroup
character string of timegroup column name, default "timegroup"
- geometry
simple feature geometry list column name, generated by
get_geometry(). Default 'geometry', see details under Interface
Value
centroid_dyad returns the input edges appended with centroid
column(s) for each timestep and dyad id.
If coords are provided, the centroid columns will be named by prefixing
the coordinate column names with "centroid_" (eg. "X" = "centroid_X"). If
geometry is used, the centroid column will be named "centroid".
Note: due to the merge required within this function, the output needs to be
reassigned unlike some other spatsoc functions like dyad_id and
group_pts. See details in
FAQ.
A message is returned when the centroid column(s) already exist in the input because they will be overwritten.
Details
The edges and DT must be data.tables. If your data is a data.frame,
you can convert it by reference using data.table::setDT() or by reassigning
using data.table::data.table().
The edges and DT are internally merged in this function using the columns
id, dyadID and timegroup. This function expects a dyadID present,
generated with the dyad_id function. The id and timegroup arguments
expect the names of a column in DT which correspond to the id and timegroup
columns.
See below under "Interface" for details on providing coordinates and under "Centroid function" for details on the underlying centroid function used.
Interface
Two interfaces are available for providing coordinates:
Provide
coordsand optionallycrs. Thecoordsargument expects the names of the X and Y coordinate columns. Thecrsargument expects a character string or numeric defining the coordinate reference system to be passed to sf::st_crs. For example, for UTM zone 36S (EPSG 32736), the crs argument iscrs = "EPSG:32736"orcrs = 32736. See https://spatialreference.org for a list of EPSG codes. For centroid calculations, ifcrsis NULL, it will be internally set toNA_crs_.(New!) Provide
geometry. Thegeometryargument allows the user to supply ageometrycolumn that represents the coordinates as a simple feature geometry list column. This interface expects the user to prepare their input DT withget_geometry(). To use this interface, leave thecoordsandcrsargumentsNULL, and the default argument forgeometry('geometry') will be used directly.
Centroid function
The underlying centroid function used depends on the crs of the coordinates or geometry provided.
If the crs is longlat degrees (as determined by
sf::st_is_longlat()) andsf::sf_use_s2()is TRUE, the distance function issf::st_centroid()which passes tos2::s2_centroid().If the crs is longlat degrees but
sf::sf_use_s2()is FALSE, the centroid calculated will be incorrect. Seesf::st_centroid().If the crs is not longlat degrees (eg. NULL, NA_crs_, or projected), the centroid function used is mean.
Note: if the input is length 1, the input is returned.
See also
dyad_id edge_dist edge_nn group_pts
Other Centroid functions:
centroid_fusion(),
centroid_group(),
direction_to_centroid(),
distance_to_centroid()
Examples
# Load data.table
library(data.table)
# Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))
# Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]
#> ID X Y datetime population
#> <char> <num> <num> <POSc> <int>
#> 1: A 715851.4 5505340 2016-11-01 00:00:54 1
#> 2: A 715822.8 5505289 2016-11-01 02:01:22 1
#> 3: A 715872.9 5505252 2016-11-01 04:01:24 1
#> 4: A 715820.5 5505231 2016-11-01 06:01:05 1
#> 5: A 715830.6 5505227 2016-11-01 08:01:11 1
#> ---
#> 14293: J 700616.5 5509069 2017-02-28 14:00:54 1
#> 14294: J 700622.6 5509065 2017-02-28 16:00:11 1
#> 14295: J 700657.5 5509277 2017-02-28 18:00:55 1
#> 14296: J 700610.3 5509269 2017-02-28 20:00:48 1
#> 14297: J 700744.0 5508782 2017-02-28 22:00:39 1
# Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')
#> ID X Y datetime population minutes timegroup
#> <char> <num> <num> <POSc> <int> <int> <int>
#> 1: A 715851.4 5505340 2016-11-01 00:00:54 1 0 1
#> 2: A 715822.8 5505289 2016-11-01 02:01:22 1 0 2
#> 3: A 715872.9 5505252 2016-11-01 04:01:24 1 0 3
#> 4: A 715820.5 5505231 2016-11-01 06:01:05 1 0 4
#> 5: A 715830.6 5505227 2016-11-01 08:01:11 1 0 5
#> ---
#> 14293: J 700616.5 5509069 2017-02-28 14:00:54 1 0 1393
#> 14294: J 700622.6 5509065 2017-02-28 16:00:11 1 0 1394
#> 14295: J 700657.5 5509277 2017-02-28 18:00:55 1 0 1440
#> 14296: J 700610.3 5509269 2017-02-28 20:00:48 1 0 1395
#> 14297: J 700744.0 5508782 2017-02-28 22:00:39 1 0 1396
# Edge-list generation
edges <- edge_dist(
DT,
threshold = 100,
id = 'ID',
coords = c('X', 'Y'),
timegroup = 'timegroup',
returnDist = TRUE,
fillNA = FALSE
)
# Generate dyad id
dyad_id(edges, id1 = 'ID1', id2 = 'ID2')
#> timegroup ID1 ID2 distance dyadID
#> <int> <char> <char> <num> <char>
#> 1: 1 G B 5.782904 B-G
#> 2: 1 H E 65.061671 E-H
#> 3: 1 B G 5.782904 B-G
#> 4: 1 E H 65.061671 E-H
#> 5: 2 H E 79.659918 E-H
#> ---
#> 17174: 1440 I C 2.831071 C-I
#> 17175: 1440 C F 9.372972 C-F
#> 17176: 1440 I F 7.512922 F-I
#> 17177: 1440 C I 2.831071 C-I
#> 17178: 1440 F I 7.512922 F-I
# Calculate dyad centroid
centroids <- centroid_dyad(
edges,
DT,
id = 'ID',
coords = c('X', 'Y'),
timegroup = 'timegroup'
)
print(centroids)
#> timegroup ID1 ID2 distance dyadID centroid_X centroid_Y
#> <int> <char> <char> <num> <char> <num> <num>
#> 1: 1 G B 5.782904 B-G 699637.9 5509637
#> 2: 1 H E 65.061671 E-H 701698.0 5504306
#> 3: 1 B G 5.782904 B-G 699637.9 5509637
#> 4: 1 E H 65.061671 E-H 701698.0 5504306
#> 5: 2 H E 79.659918 E-H 701652.4 5504236
#> ---
#> 17174: 1440 I C 2.831071 C-I 702960.6 5509447
#> 17175: 1440 C F 9.372972 C-F 702960.7 5509451
#> 17176: 1440 I F 7.512922 F-I 702959.5 5509452
#> 17177: 1440 C I 2.831071 C-I 702960.6 5509447
#> 17178: 1440 F I 7.512922 F-I 702959.5 5509452
# Or, using the new geometry interface
get_geometry(DT, coords = c('X', 'Y'), crs = 32736)
#> ID X Y datetime population minutes timegroup
#> <char> <num> <num> <POSc> <int> <int> <int>
#> 1: A 715851.4 5505340 2016-11-01 00:00:54 1 0 1
#> 2: A 715822.8 5505289 2016-11-01 02:01:22 1 0 2
#> 3: A 715872.9 5505252 2016-11-01 04:01:24 1 0 3
#> 4: A 715820.5 5505231 2016-11-01 06:01:05 1 0 4
#> 5: A 715830.6 5505227 2016-11-01 08:01:11 1 0 5
#> ---
#> 14293: J 700616.5 5509069 2017-02-28 14:00:54 1 0 1393
#> 14294: J 700622.6 5509065 2017-02-28 16:00:11 1 0 1394
#> 14295: J 700657.5 5509277 2017-02-28 18:00:55 1 0 1440
#> 14296: J 700610.3 5509269 2017-02-28 20:00:48 1 0 1395
#> 14297: J 700744.0 5508782 2017-02-28 22:00:39 1 0 1396
#> geometry
#> <sfc_POINT>
#> 1: POINT (715851.4 5505340)
#> 2: POINT (715822.8 5505289)
#> 3: POINT (715872.9 5505252)
#> 4: POINT (715820.5 5505231)
#> 5: POINT (715830.6 5505227)
#> ---
#> 14293: POINT (700616.5 5509069)
#> 14294: POINT (700622.6 5509065)
#> 14295: POINT (700657.5 5509277)
#> 14296: POINT (700610.3 5509269)
#> 14297: POINT (700744 5508782)
edges <- edge_dist(DT, threshold = 100, id = 'ID', timegroup = 'timegroup')
dyad_id(edges, id = 'ID1', id2 = 'ID2')
#> Key: <timegroup, ID1>
#> timegroup ID1 ID2 dyadID
#> <int> <char> <char> <char>
#> 1: 1 A <NA> <NA>
#> 2: 1 B G B-G
#> 3: 1 C <NA> <NA>
#> 4: 1 D <NA> <NA>
#> 5: 1 E H E-H
#> ---
#> 22985: 1440 G <NA> <NA>
#> 22986: 1440 H <NA> <NA>
#> 22987: 1440 I C C-I
#> 22988: 1440 I F F-I
#> 22989: 1440 J <NA> <NA>
centroids <- centroid_dyad(
edges,
DT,
id = 'ID',
timegroup = 'timegroup'
)
print(centroids)
#> timegroup ID1 ID2 dyadID geometry
#> <int> <char> <char> <char> <sfc_POINT>
#> 1: 1 A <NA> <NA> POINT (715851.4 5505340)
#> 2: 1 B G B-G POINT (699640.2 5509638)
#> 3: 1 C <NA> <NA> POINT (710205.4 5505888)
#> 4: 1 D <NA> <NA> POINT (700875 5490954)
#> 5: 1 E H E-H POINT (701671.9 5504286)
#> ---
#> 22985: 1440 G <NA> <NA> POINT (698212 5508998)
#> 22986: 1440 H <NA> <NA> POINT (699368.1 5507901)
#> 22987: 1440 I C C-I POINT (702959.5 5509448)
#> 22988: 1440 I F F-I POINT (702959.5 5509448)
#> 22989: 1440 J <NA> <NA> POINT (700657.5 5509277)
#> centroid
#> <sfc_POINT>
#> 1: POINT EMPTY
#> 2: POINT (699637.9 5509637)
#> 3: POINT EMPTY
#> 4: POINT EMPTY
#> 5: POINT (701698 5504306)
#> ---
#> 22985: POINT EMPTY
#> 22986: POINT EMPTY
#> 22987: POINT (702960.6 5509447)
#> 22988: POINT (702959.5 5509452)
#> 22989: POINT EMPTY
