Skip to contents

Given the mean direction of a group of animals, leader_direction_group shifts the coordinate system to a new origin at the group centroid and rotates the coordinate system by the mean direction to return each individual's position along the mean direction, representing leadership in terms of the front-back position in each group's mean direction.

Usage

leader_direction_group(
  DT = NULL,
  group_direction = "group_direction",
  coords = NULL,
  group = "group",
  return_rank = FALSE,
  ties.method = "average"
)

Arguments

DT

input data.table with group direction columns generated by direction_group and centroid columns generated by centroid_group

group_direction

group_direction column name generated using direction_group, default 'group_direction'

coords

character vector of X coordinate and Y coordinate column names. Note: the order is assumed X followed by Y column names.

group

group column name, generated by group_pts, default 'group'

return_rank

boolean if rank distance should also be returned, default FALSE

ties.method

see ?data.table::frank

Value

leader_direction_group returns the input DT appended with a position_group_direction column indicating the position along the group direction in the units of the projection and, optionally when return_rank = TRUE, a rank_position_group_direction column indicating the the ranked position along the group direction.

A message is returned when position_group_direction or rank_position_group_direction columns already exist in the input DT, because they will be overwritten.

Details

The function accepts a data.table with relocation data appended with a group_direction column from direction_group and group centroid columns from centroid_group. Relocation data should be in two columns representing the X and Y coordinates.

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using data.table::setDT or by reassigning using data.table::data.table.

The group_direction argument expects the names of columns in DT which correspond to the mean group direction generated by direction_group. The mean group direction column is expected in units of radians. The coords arguments expects the names of columns in DT which correspond to the X and Y coordinate columns. The return_rank argument controls if the rank of each individual's distance to the group centroid is also returned. If return_rank is TRUE, the group argument is required to specify the group column generated by group_pts. The ties.method argument is passed to data.table::frank, see details at ?data.table::frank.

References

See examples of measuring leadership along group direction (also called forefront index):

Examples

# Load data.table
library(data.table)

# Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

# (Subset example data to reduce example run time)
DT <- DT[year(datetime) == 2016]

# Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]
#>           ID        X       Y            datetime population
#>       <char>    <num>   <num>              <POSc>      <int>
#>    1:      A 715851.4 5505340 2016-11-01 00:00:54          1
#>    2:      A 715822.8 5505289 2016-11-01 02:01:22          1
#>    3:      A 715872.9 5505252 2016-11-01 04:01:24          1
#>    4:      A 715820.5 5505231 2016-11-01 06:01:05          1
#>    5:      A 715830.6 5505227 2016-11-01 08:01:11          1
#>   ---                                                       
#> 7288:      J 700211.6 5509087 2016-12-31 14:00:49          1
#> 7289:      J 700165.3 5508825 2016-12-31 16:00:23          1
#> 7290:      J 700028.7 5508826 2016-12-31 18:00:53          1
#> 7291:      J 700230.9 5508609 2016-12-31 20:00:53          1
#> 7292:      J 700110.1 5508383 2016-12-31 22:00:54          1

# Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')
#>           ID        X       Y            datetime population minutes timegroup
#>       <char>    <num>   <num>              <POSc>      <int>   <int>     <int>
#>    1:      A 715851.4 5505340 2016-11-01 00:00:54          1       0         1
#>    2:      A 715822.8 5505289 2016-11-01 02:01:22          1       0         2
#>    3:      A 715872.9 5505252 2016-11-01 04:01:24          1       0         3
#>    4:      A 715820.5 5505231 2016-11-01 06:01:05          1       0         4
#>    5:      A 715830.6 5505227 2016-11-01 08:01:11          1       0         5
#>   ---                                                                         
#> 7288:      J 700211.6 5509087 2016-12-31 14:00:49          1       0       728
#> 7289:      J 700165.3 5508825 2016-12-31 16:00:23          1       0       729
#> 7290:      J 700028.7 5508826 2016-12-31 18:00:53          1       0       730
#> 7291:      J 700230.9 5508609 2016-12-31 20:00:53          1       0       731
#> 7292:      J 700110.1 5508383 2016-12-31 22:00:54          1       0       732

# Spatial grouping with timegroup
group_pts(DT, threshold = 50, id = 'ID',
          coords = c('X', 'Y'), timegroup = 'timegroup')
#>           ID        X       Y            datetime population minutes timegroup
#>       <char>    <num>   <num>              <POSc>      <int>   <int>     <int>
#>    1:      A 715851.4 5505340 2016-11-01 00:00:54          1       0         1
#>    2:      A 715822.8 5505289 2016-11-01 02:01:22          1       0         2
#>    3:      A 715872.9 5505252 2016-11-01 04:01:24          1       0         3
#>    4:      A 715820.5 5505231 2016-11-01 06:01:05          1       0         4
#>    5:      A 715830.6 5505227 2016-11-01 08:01:11          1       0         5
#>   ---                                                                         
#> 7288:      J 700211.6 5509087 2016-12-31 14:00:49          1       0       728
#> 7289:      J 700165.3 5508825 2016-12-31 16:00:23          1       0       729
#> 7290:      J 700028.7 5508826 2016-12-31 18:00:53          1       0       730
#> 7291:      J 700230.9 5508609 2016-12-31 20:00:53          1       0       731
#> 7292:      J 700110.1 5508383 2016-12-31 22:00:54          1       0       732
#>       group
#>       <int>
#>    1:     1
#>    2:     2
#>    3:     3
#>    4:     4
#>    5:     5
#>   ---      
#> 7288:   728
#> 7289:   729
#> 7290:  5531
#> 7291:   731
#> 7292:  5532

# Calculate direction at each step
direction_step(
  DT = DT,
  id = 'ID',
  coords = c('X', 'Y'),
  projection = 32736
)
#>           ID        X       Y            datetime population minutes timegroup
#>       <char>    <num>   <num>              <POSc>      <int>   <int>     <int>
#>    1:      A 715851.4 5505340 2016-11-01 00:00:54          1       0         1
#>    2:      A 715822.8 5505289 2016-11-01 02:01:22          1       0         2
#>    3:      A 715872.9 5505252 2016-11-01 04:01:24          1       0         3
#>    4:      A 715820.5 5505231 2016-11-01 06:01:05          1       0         4
#>    5:      A 715830.6 5505227 2016-11-01 08:01:11          1       0         5
#>   ---                                                                         
#> 7288:      J 700211.6 5509087 2016-12-31 14:00:49          1       0       728
#> 7289:      J 700165.3 5508825 2016-12-31 16:00:23          1       0       729
#> 7290:      J 700028.7 5508826 2016-12-31 18:00:53          1       0       730
#> 7291:      J 700230.9 5508609 2016-12-31 20:00:53          1       0       731
#> 7292:      J 700110.1 5508383 2016-12-31 22:00:54          1       0       732
#>       group         direction
#>       <int>           <units>
#>    1:     1 -2.65649015 [rad]
#>    2:     2  2.17592086 [rad]
#>    3:     3 -1.98432277 [rad]
#>    4:     4  1.90650150 [rad]
#>    5:     5 -0.04059949 [rad]
#>   ---                        
#> 7288:   728 -2.99285448 [rad]
#> 7289:   729 -1.59174536 [rad]
#> 7290:  5531  2.36456688 [rad]
#> 7291:   731 -2.67757174 [rad]
#> 7292:  5532          NA [rad]

# Calculate group centroid
centroid_group(DT, coords = c('X', 'Y'))
#>           ID        X       Y            datetime population minutes timegroup
#>       <char>    <num>   <num>              <POSc>      <int>   <int>     <int>
#>    1:      A 715851.4 5505340 2016-11-01 00:00:54          1       0         1
#>    2:      A 715822.8 5505289 2016-11-01 02:01:22          1       0         2
#>    3:      A 715872.9 5505252 2016-11-01 04:01:24          1       0         3
#>    4:      A 715820.5 5505231 2016-11-01 06:01:05          1       0         4
#>    5:      A 715830.6 5505227 2016-11-01 08:01:11          1       0         5
#>   ---                                                                         
#> 7288:      J 700211.6 5509087 2016-12-31 14:00:49          1       0       728
#> 7289:      J 700165.3 5508825 2016-12-31 16:00:23          1       0       729
#> 7290:      J 700028.7 5508826 2016-12-31 18:00:53          1       0       730
#> 7291:      J 700230.9 5508609 2016-12-31 20:00:53          1       0       731
#> 7292:      J 700110.1 5508383 2016-12-31 22:00:54          1       0       732
#>       group         direction centroid_X centroid_Y
#>       <int>           <units>      <num>      <num>
#>    1:     1 -2.65649015 [rad]   715851.4    5505340
#>    2:     2  2.17592086 [rad]   715822.8    5505289
#>    3:     3 -1.98432277 [rad]   715872.9    5505252
#>    4:     4  1.90650150 [rad]   715820.5    5505231
#>    5:     5 -0.04059949 [rad]   715830.6    5505227
#>   ---                                              
#> 7288:   728 -2.99285448 [rad]   700191.6    5509089
#> 7289:   729 -1.59174536 [rad]   700156.0    5508800
#> 7290:  5531  2.36456688 [rad]   700028.7    5508826
#> 7291:   731 -2.67757174 [rad]   700254.6    5508589
#> 7292:  5532          NA [rad]   700110.1    5508383

# Calculate group direction
direction_group(DT)
#>           ID        X       Y            datetime population minutes timegroup
#>       <char>    <num>   <num>              <POSc>      <int>   <int>     <int>
#>    1:      A 715851.4 5505340 2016-11-01 00:00:54          1       0         1
#>    2:      A 715822.8 5505289 2016-11-01 02:01:22          1       0         2
#>    3:      A 715872.9 5505252 2016-11-01 04:01:24          1       0         3
#>    4:      A 715820.5 5505231 2016-11-01 06:01:05          1       0         4
#>    5:      A 715830.6 5505227 2016-11-01 08:01:11          1       0         5
#>   ---                                                                         
#> 7288:      J 700211.6 5509087 2016-12-31 14:00:49          1       0       728
#> 7289:      J 700165.3 5508825 2016-12-31 16:00:23          1       0       729
#> 7290:      J 700028.7 5508826 2016-12-31 18:00:53          1       0       730
#> 7291:      J 700230.9 5508609 2016-12-31 20:00:53          1       0       731
#> 7292:      J 700110.1 5508383 2016-12-31 22:00:54          1       0       732
#>       group         direction centroid_X centroid_Y   group_direction
#>       <int>           <units>      <num>      <num>           <units>
#>    1:     1 -2.65649015 [rad]   715851.4    5505340 -2.65649015 [rad]
#>    2:     2  2.17592086 [rad]   715822.8    5505289  2.17592086 [rad]
#>    3:     3 -1.98432277 [rad]   715872.9    5505252 -1.98432277 [rad]
#>    4:     4  1.90650150 [rad]   715820.5    5505231  1.90650150 [rad]
#>    5:     5 -0.04059949 [rad]   715830.6    5505227 -0.04059949 [rad]
#>   ---                                                                
#> 7288:   728 -2.99285448 [rad]   700191.6    5509089 -3.05184005 [rad]
#> 7289:   729 -1.59174536 [rad]   700156.0    5508800 -2.41173804 [rad]
#> 7290:  5531  2.36456688 [rad]   700028.7    5508826  2.36456688 [rad]
#> 7291:   731 -2.67757174 [rad]   700254.6    5508589 -1.70798015 [rad]
#> 7292:  5532          NA [rad]   700110.1    5508383          NA [rad]

# Calculate leader in terms of position along group direction
leader_direction_group(DT, coords = c('X', 'Y'))
#>           ID        X       Y            datetime population minutes timegroup
#>       <char>    <num>   <num>              <POSc>      <int>   <int>     <int>
#>    1:      A 715851.4 5505340 2016-11-01 00:00:54          1       0         1
#>    2:      A 715822.8 5505289 2016-11-01 02:01:22          1       0         2
#>    3:      A 715872.9 5505252 2016-11-01 04:01:24          1       0         3
#>    4:      A 715820.5 5505231 2016-11-01 06:01:05          1       0         4
#>    5:      A 715830.6 5505227 2016-11-01 08:01:11          1       0         5
#>   ---                                                                         
#> 7288:      J 700211.6 5509087 2016-12-31 14:00:49          1       0       728
#> 7289:      J 700165.3 5508825 2016-12-31 16:00:23          1       0       729
#> 7290:      J 700028.7 5508826 2016-12-31 18:00:53          1       0       730
#> 7291:      J 700230.9 5508609 2016-12-31 20:00:53          1       0       731
#> 7292:      J 700110.1 5508383 2016-12-31 22:00:54          1       0       732
#>       group         direction centroid_X centroid_Y   group_direction
#>       <int>           <units>      <num>      <num>           <units>
#>    1:     1 -2.65649015 [rad]   715851.4    5505340 -2.65649015 [rad]
#>    2:     2  2.17592086 [rad]   715822.8    5505289  2.17592086 [rad]
#>    3:     3 -1.98432277 [rad]   715872.9    5505252 -1.98432277 [rad]
#>    4:     4  1.90650150 [rad]   715820.5    5505231  1.90650150 [rad]
#>    5:     5 -0.04059949 [rad]   715830.6    5505227 -0.04059949 [rad]
#>   ---                                                                
#> 7288:   728 -2.99285448 [rad]   700191.6    5509089 -3.05184005 [rad]
#> 7289:   729 -1.59174536 [rad]   700156.0    5508800 -2.41173804 [rad]
#> 7290:  5531  2.36456688 [rad]   700028.7    5508826  2.36456688 [rad]
#> 7291:   731 -2.67757174 [rad]   700254.6    5508589 -1.70798015 [rad]
#> 7292:  5532          NA [rad]   700110.1    5508383          NA [rad]
#>       position_group_direction
#>                          <num>
#>    1:                  0.00000
#>    2:                  0.00000
#>    3:                  0.00000
#>    4:                  0.00000
#>    5:                  0.00000
#>   ---                         
#> 7288:                -19.72453
#> 7289:                -23.62960
#> 7290:                  0.00000
#> 7291:                -16.87561
#> 7292:                       NA