Superseded. Run a pipeline with persistent clustermq
workers.
Source: R/tar_make_clustermq.R
tar_make_clustermq.Rd
Superseded. Use tar_make()
with crew
:
https://books.ropensci.org/targets/crew.html.
Usage
tar_make_clustermq(
names = NULL,
shortcut = targets::tar_config_get("shortcut"),
reporter = targets::tar_config_get("reporter_make"),
seconds_meta_append = targets::tar_config_get("seconds_meta_append"),
seconds_meta_upload = targets::tar_config_get("seconds_meta_upload"),
seconds_reporter = targets::tar_config_get("seconds_reporter"),
seconds_interval = targets::tar_config_get("seconds_interval"),
workers = targets::tar_config_get("workers"),
log_worker = FALSE,
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function, reporter),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store"),
garbage_collection = targets::tar_config_get("garbage_collection")
)
Arguments
- names
Names of the targets to run or check. Set to
NULL
to check/run all the targets (default). The object supplied tonames
should be atidyselect
expression likeany_of()
orstarts_with()
fromtidyselect
itself, ortar_described_as()
to select target names based on their descriptions.- shortcut
Logical of length 1, how to interpret the
names
argument. Ifshortcut
isFALSE
(default) then the function checks all targets upstream ofnames
as far back as the dependency graph goes.shortcut = TRUE
increases speed if there are a lot of up-to-date targets, but it assumes all the dependencies are up to date, so please use with caution. It relies on stored metadata for information about upstream dependencies.shortcut = TRUE
only works if you setnames
.- reporter
Character of length 1, name of the reporter to user. Controls how messages are printed as targets run in the pipeline. Defaults to
tar_config_get("reporter_make")
. Choices:"silent"
: print nothing."summary"
: print a running total of the number of each targets in each status category (queued, dispatched, skipped, completed, canceled, or errored). Also show a timestamp ("%H:%M %OS2"
strptime()
format) of the last time the progress changed and printed to the screen."timestamp"
: same as the"verbose"
reporter except that each .message begins with a time stamp."timestamp_positives"
: same as the"timestamp"
reporter except without messages for skipped targets."verbose"
: print messages for individual targets as they start, finish, or are skipped. Each individual target-specific time (e.g. "3.487 seconds") is strictly the elapsed runtime of the target and does not include steps like data retrieval and output storage."verbose_positives"
: same as the"verbose"
reporter except without messages for skipped targets.
- seconds_meta_append
Positive numeric of length 1 with the minimum number of seconds between saves to the local metadata and progress files in the data store. Higher values generally make the pipeline run faster, but unsaved work (in the event of a crash) is not up to date. When the pipeline ends, all the metadata and progress data is saved immediately, regardless of
seconds_meta_append
.- seconds_meta_upload
Positive numeric of length 1 with the minimum number of seconds between uploads of the metadata and progress data to the cloud (see https://books.ropensci.org/targets/cloud-storage.html). Higher values generally make the pipeline run faster, but unsaved work (in the event of a crash) may not be backed up to the cloud. When the pipeline ends, all the metadata and progress data is uploaded immediately, regardless of
seconds_meta_upload
.- seconds_reporter
Positive numeric of length 1 with the minimum number of seconds between times when the reporter prints progress messages to the R console.
- seconds_interval
Deprecated on 2023-08-24 (version 1.2.2.9001). Use
seconds_meta_append
,seconds_meta_upload
, andseconds_reporter
instead.- workers
Positive integer, number of persistent
clustermq
workers to create.- log_worker
Logical, whether to write a log file for each worker. Same as the
log_worker
argument ofclustermq::Q()
andclustermq::workers()
.- callr_function
A function from
callr
to start a fresh clean R process to do the work. Set toNULL
to run in the current session instead of an external process (but restart your R session just before you do in order to clear debris out of the global environment).callr_function
needs to beNULL
for interactive debugging, e.g.tar_option_set(debug = "your_target")
. However,callr_function
should not beNULL
for serious reproducible work.- callr_arguments
A list of arguments to
callr_function
.- envir
An environment, where to run the target R script (default:
_targets.R
) ifcallr_function
isNULL
. Ignored ifcallr_function
is anything other thanNULL
.callr_function
should only beNULL
for debugging and testing purposes, not for serious runs of a pipeline, etc.The
envir
argument oftar_make()
and related functions always overrides the current value oftar_option_get("envir")
in the current R session just before running the target script file, so whenever you need to set an alternativeenvir
, you should always set it withtar_option_set()
from within the target script file. In other words, if you calltar_option_set(envir = envir1)
in an interactive session and thentar_make(envir = envir2, callr_function = NULL)
, thenenvir2
will be used.- script
Character of length 1, path to the target script file. Defaults to
tar_config_get("script")
, which in turn defaults to_targets.R
. When you set this argument, the value oftar_config_get("script")
is temporarily changed for the current function call. Seetar_script()
,tar_config_get()
, andtar_config_set()
for details about the target script file and how to set it persistently for a project.- store
Character of length 1, path to the
targets
data store. Defaults totar_config_get("store")
, which in turn defaults to_targets/
. When you set this argument, the value oftar_config_get("store")
is temporarily changed for the current function call. Seetar_config_get()
andtar_config_set()
for details about how to set the data store path persistently for a project.- garbage_collection
Logical of length 1, whether to run garbage collection on the main process before sending a target to a worker. Independent from the
garbage_collection
argument oftar_target()
, which controls garbage collection on the worker.
Value
NULL
except if callr_function = callr::r_bg()
, in which case
a handle to the callr
background process is returned. Either way,
the value is invisibly returned.
Details
tar_make_clustermq()
is like tar_make()
except that targets
run in parallel on persistent workers. A persistent worker is an
R process that runs for a long time and runs multiple
targets during its lifecycle. Persistent
workers launch as soon as the pipeline reaches an outdated
target with deployment = "worker"
, and they keep running
until the pipeline starts to wind down.
To configure tar_make_clustermq()
, you must configure
the clustermq
package. To do this, set global options
clustermq.scheduler
and clustermq.template
inside the target script file (default: _targets.R
).
To read more about configuring clustermq
for your scheduler, visit
https://mschubert.github.io/clustermq/articles/userguide.html#configuration # nolint
or https://books.ropensci.org/targets/hpc.html.
clustermq
is not a strict dependency of targets
,
so you must install clustermq
yourself.
Storage access
Several functions like tar_make()
, tar_read()
, tar_load()
,
tar_meta()
, and tar_progress()
read or modify
the local data store of the pipeline.
The local data store is in flux while a pipeline is running,
and depending on how distributed computing or cloud computing is set up,
not all targets can even reach it. So please do not call these
functions from inside a target as part of a running
pipeline. The only exception is literate programming
target factories in the tarchetypes
package such as tar_render()
and tar_quarto()
.
See also
Other pipeline:
tar_make()
,
tar_make_future()
Examples
if (!identical(tolower(Sys.info()[["sysname"]]), "windows")) {
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({
options(clustermq.scheduler = "multiprocess") # Does not work on Windows.
tar_option_set()
list(tar_target(x, 1 + 1))
}, ask = FALSE)
tar_make_clustermq()
})
}
}