Return data used to create vis_cor plot
Create a tidy dataframe of correlations suitable for plotting
Usage
data_vis_cor(x, ...)
# Default S3 method
data_vis_cor(x, ...)
# S3 method for class 'data.frame'
data_vis_cor(
x,
cor_method = "pearson",
na_action = "pairwise.complete.obs",
...
)
# S3 method for class 'grouped_df'
data_vis_cor(x, ...)
Arguments
- x
data.frame
- ...
extra arguments (currently unused)
- cor_method
correlation method to use, from
cor
: "a character string indicating which correlation coefficient (or covariance) is to be computed. One of "pearson" (default), "kendall", or "spearman": can be abbreviated."- na_action
The method for computing covariances when there are missing values present. This can be "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). This option is taken from the
cor
function argumentuse
.
Examples
data_vis_cor(airquality)
#> # A tibble: 36 × 3
#> row_1 row_2 value
#> <chr> <chr> <dbl>
#> 1 Ozone Ozone 1
#> 2 Ozone Solar.R 0.348
#> 3 Ozone Wind -0.602
#> 4 Ozone Temp 0.698
#> 5 Ozone Month 0.165
#> 6 Ozone Day -0.0132
#> 7 Solar.R Ozone 0.348
#> 8 Solar.R Solar.R 1
#> 9 Solar.R Wind -0.0568
#> 10 Solar.R Temp 0.276
#> # ℹ 26 more rows
if (FALSE) { # \dontrun{
#return vis_dat data for each group
library(dplyr)
airquality %>%
group_by(Month) %>%
data_vis_cor()
} # }
data_vis_cor(airquality)
#> # A tibble: 36 × 3
#> row_1 row_2 value
#> <chr> <chr> <dbl>
#> 1 Ozone Ozone 1
#> 2 Ozone Solar.R 0.348
#> 3 Ozone Wind -0.602
#> 4 Ozone Temp 0.698
#> 5 Ozone Month 0.165
#> 6 Ozone Day -0.0132
#> 7 Solar.R Ozone 0.348
#> 8 Solar.R Solar.R 1
#> 9 Solar.R Wind -0.0568
#> 10 Solar.R Temp 0.276
#> # ℹ 26 more rows