Return data used to create vis_cor plot
Create a tidy dataframe of correlations suitable for plotting
Usage
data_vis_cor(x, ...)
# Default S3 method
data_vis_cor(x, ...)
# S3 method for class 'data.frame'
data_vis_cor(
  x,
  cor_method = "pearson",
  na_action = "pairwise.complete.obs",
  ...
)
# S3 method for class 'grouped_df'
data_vis_cor(x, ...)Arguments
- x
- data.frame 
- ...
- extra arguments (currently unused) 
- cor_method
- correlation method to use, from - cor: "a character string indicating which correlation coefficient (or covariance) is to be computed. One of "pearson" (default), "kendall", or "spearman": can be abbreviated."
- na_action
- The method for computing covariances when there are missing values present. This can be "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). This option is taken from the - corfunction argument- use.
Examples
data_vis_cor(airquality)
#> # A tibble: 36 × 3
#>    row_1   row_2     value
#>    <chr>   <chr>     <dbl>
#>  1 Ozone   Ozone    1     
#>  2 Ozone   Solar.R  0.348 
#>  3 Ozone   Wind    -0.602 
#>  4 Ozone   Temp     0.698 
#>  5 Ozone   Month    0.165 
#>  6 Ozone   Day     -0.0132
#>  7 Solar.R Ozone    0.348 
#>  8 Solar.R Solar.R  1     
#>  9 Solar.R Wind    -0.0568
#> 10 Solar.R Temp     0.276 
#> # ℹ 26 more rows
if (FALSE) { # \dontrun{
#return vis_dat data for each group
library(dplyr)
airquality %>%
  group_by(Month) %>%
  data_vis_cor()
} # }
data_vis_cor(airquality)
#> # A tibble: 36 × 3
#>    row_1   row_2     value
#>    <chr>   <chr>     <dbl>
#>  1 Ozone   Ozone    1     
#>  2 Ozone   Solar.R  0.348 
#>  3 Ozone   Wind    -0.602 
#>  4 Ozone   Temp     0.698 
#>  5 Ozone   Month    0.165 
#>  6 Ozone   Day     -0.0132
#>  7 Solar.R Ozone    0.348 
#>  8 Solar.R Solar.R  1     
#>  9 Solar.R Wind    -0.0568
#> 10 Solar.R Temp     0.276 
#> # ℹ 26 more rows
