Fit the cosinor GLMM model using the output from update_formula_and_data()
and a new formula
Source: R/data_processor.R
fit_model_and_process.Rd
Fit the cosinor GLMM model using the output from
update_formula_and_data()
and a new formula
Arguments
- obj
Output from
update_formula_and_data()
.- formula
A (optionally) new formula to use when fitting the cosinor model (maybe with random effects) or other covariates found in the data.
- ...
Optional additional arguments passed to
glmmTMB::glmmTMB()
.
Examples
# Use vitamind data but add a "patient" identifier used as a random effect
vitamind2 <- vitamind
vitamind2$patient <- sample(
LETTERS[1:5],
size = nrow(vitamind2), replace = TRUE
)
# Use update_formula_and_data() to perform wrangling steps of cglmm()
# without yet fitting the model
data_and_formula <- update_formula_and_data(
data = vitamind2,
formula = vit_d ~ X + amp_acro(time,
group = "X",
period = 12
)
)
# print formula from above
data_and_formula$newformula
#> vit_d ~ X + X:main_rrr1 + X:main_sss1
#> <environment: 0x56529fc81e88>
# fit model while adding random effect to cosinor model formula.
mod <- fit_model_and_process(
obj = data_and_formula,
formula = update.formula(
data_and_formula$newformula, . ~ . + (1 | patient)
)
)
mod
#>
#> Conditional Model
#>
#> Raw formula:
#> vit_d ~ X + (1 | patient) + X:main_rrr1 + X:main_sss1
#>
#> Raw Coefficients:
#> Estimate
#> (Intercept) 29.72050
#> X1 1.85902
#> X0:main_rrr1 0.94592
#> X1:main_rrr1 6.56966
#> X0:main_sss1 6.07604
#> X1:main_sss1 4.78863
#>
#> Transformed Coefficients:
#> Estimate
#> (Intercept) 29.72050
#> [X=1] 1.85902
#> [X=0]:amp 6.14923
#> [X=1]:amp 8.12967
#> [X=0]:acr 1.41636
#> [X=1]:acr 0.62986
mod$fit # printing the `glmmTMB` model within shows Std.Dev. of random effect
#> Formula: vit_d ~ X + (1 | patient) + X:main_rrr1 + X:main_sss1
#> Zero inflation: ~1 - 1
#> Data: newdata
#> AIC BIC logLik df.resid
#> 1247.3630 1273.7496 -615.6815 192
#> Random-effects (co)variances:
#>
#> Conditional model:
#> Groups Name Std.Dev.
#> patient (Intercept) 0.6644
#> Residual 5.2239
#>
#> Number of obs: 200 / Conditional model: patient, 5
#>
#> Dispersion estimate for gaussian family (sigma^2): 27.3
#>
#> Fixed Effects:
#>
#> Conditional model:
#> (Intercept) X1 X0:main_rrr1 X1:main_rrr1 X0:main_sss1
#> 29.7205 1.8590 0.9459 6.5697 6.0760
#> X1:main_sss1
#> 4.7886