Update data and formula for fitting cglmm model
Usage
update_formula_and_data(
data,
formula,
family = "gaussian",
quietly = TRUE,
dispformula = ~1,
ziformula = ~0
)
Arguments
- data
input data for fitting cglmm model.
- formula
model formula, specified by user including
amp_acro()
.- family
the model family.
- quietly
controls whether messages from amp_acro are displayed. TRUE by default
- dispformula
The formula specifying the dispersion model
- ziformula
The formula specifying the zero-inflation model
Examples
# Use vitamind data but add a "patient" identifier used as a random effect
vitamind2 <- vitamind
vitamind2$patient <- sample(
LETTERS[1:5],
size = nrow(vitamind2), replace = TRUE
)
# Use update_formula_and_data() to perform wrangling steps of cglmm()
# without yet fitting the model
data_and_formula <- update_formula_and_data(
data = vitamind2,
formula = vit_d ~ X + amp_acro(time,
group = "X",
period = 12
)
)
# print formula from above
data_and_formula$newformula
#> vit_d ~ X + X:main_rrr1 + X:main_sss1
#> <environment: 0x562cbd14dea0>
# fit model while adding random effect to cosinor model formula.
mod <- fit_model_and_process(
obj = data_and_formula,
formula = update.formula(
data_and_formula$newformula, . ~ . + (1 | patient)
)
)
mod
#>
#> Conditional Model
#>
#> Raw formula:
#> vit_d ~ X + (1 | patient) + X:main_rrr1 + X:main_sss1
#>
#> Raw Coefficients:
#> Estimate
#> (Intercept) 29.64388
#> X1 1.93606
#> X0:main_rrr1 0.96588
#> X1:main_rrr1 6.46825
#> X0:main_sss1 6.18892
#> X1:main_sss1 4.82437
#>
#> Transformed Coefficients:
#> Estimate
#> (Intercept) 29.64388
#> [X=1] 1.93606
#> [X=0]:amp 6.26384
#> [X=1]:amp 8.06925
#> [X=0]:acr 1.41598
#> [X=1]:acr 0.64084
mod$fit # printing the `glmmTMB` model within shows Std.Dev. of random effect
#> Formula: vit_d ~ X + (1 | patient) + X:main_rrr1 + X:main_sss1
#> Zero inflation: ~1 - 1
#> Data: newdata
#> AIC BIC logLik df.resid
#> 1247.800 1274.187 -615.900 192
#> Random-effects (co)variances:
#>
#> Conditional model:
#> Groups Name Std.Dev.
#> patient (Intercept) 0.4868
#> Residual 5.2429
#>
#> Number of obs: 200 / Conditional model: patient, 5
#>
#> Dispersion estimate for gaussian family (sigma^2): 27.5
#>
#> Fixed Effects:
#>
#> Conditional model:
#> (Intercept) X1 X0:main_rrr1 X1:main_rrr1 X0:main_sss1
#> 29.6439 1.9361 0.9659 6.4682 6.1889
#> X1:main_sss1
#> 4.8244