A class to represent the results of Gaussian kernel-based quadratic distance tests. This includes the normality test, the two-sample test statistics and the k-sample tests.
Slots
methodString indicating the kernel-based quadratic distance test performed.
UnThe value of the test U-statistic.
VnThe value of the test V-statistic.
H0_UnA logical value indicating whether or not the null hypothesis is rejected according to U-statistic.
H0_VnA logical value indicating whether or not the null hypothesis is rejected according to Vn.
dataList of samples X (and Y).
CV_UnThe critical value computed for the test Un.
CV_VnThe critical value computed for the test Vn.
cv_methodThe method used to estimate the critical value (one of "subsampling", "permutation" or "bootstrap").
hA list with the value of bandwidth parameter used for the Gaussian kernel. If the function
select_his used, then also the matrix of computed power values and the resulting power plot are provided.BNumber of bootstrap/permutation/subsampling replications.
var_UnExact variance of the kernel-based U-statistic.
See also
kb.test() for the function that generates this class.
Examples
# create a kb.test object
x <- matrix(rnorm(100), ncol = 2)
y <- matrix(rnorm(100), ncol = 2)
# Normality test
kb.test(x, h = 0.5)
#>
#> Kernel-based quadratic distance Normality test
#> U-statistic V-statistic
#> ------------------------------------------------
#> Test Statistic: 1.534819 0.8341904
#> Critical Value: 1.787026 6.071062
#> H0 is rejected: FALSE FALSE
#> Selected tuning parameter h: 0.5
#>
# Two-sample test
kb.test(x, y, h=0.5, method = "subsampling", b = 0.9)
#>
#> Kernel-based quadratic distance two-sample test
#> U-statistic Dn Trace
#> ------------------------------------------------
#> Test Statistic: 0.7529595 0.982215
#> Critical Value: 1.109227 1.448582
#> H0 is rejected: FALSE FALSE
#> CV method: subsampling
#> Selected tuning parameter h: 0.5
#>
