For partial dependence and individual conditional expectations, this function allows a variable to be considered without having to specify what values to set the variable at. The values used are based on quantiles for continuous variables (10th, 25th, 50th, 75th, and 90th) and unique categories for categorical variables.
Examples
fit <- orsf(penguins_orsf, species ~., n_tree = 5)
orsf_pd_oob(fit, pred_spec_auto(flipper_length_mm))
#> Key: <class>
#> class flipper_length_mm mean lwr medn upr
#> <fctr> <num> <num> <num> <num> <num>
#> 1: Adelie 185 0.6510597 0.008691406 0.93333333 1
#> 2: Adelie 190 0.6376856 0.007812500 0.93333333 1
#> 3: Adelie 197 0.6051195 0.007812500 0.93170380 1
#> 4: Adelie 213 0.4517576 0.007812500 0.48514851 1
#> 5: Adelie 221 0.4441207 0.007812500 0.48514851 1
#> 6: Chinstrap 185 0.3277862 0.009615385 0.06848291 1
#> 7: Chinstrap 190 0.3462555 0.009615385 0.08347478 1
#> 8: Chinstrap 197 0.3591037 0.009615385 0.08670635 1
#> 9: Chinstrap 213 0.4371854 0.009900990 0.33333333 1
#> 10: Chinstrap 221 0.4010776 0.009900990 0.33333333 1
#> 11: Gentoo 185 0.5947110 0.057954545 0.50000000 1
#> 12: Gentoo 190 0.6487316 0.062500000 0.65885417 1
#> 13: Gentoo 197 0.8075340 0.071428571 0.99218750 1
#> 14: Gentoo 213 0.6520185 0.047619048 0.95000000 1
#> 15: Gentoo 221 0.6525966 0.047619048 0.93828125 1