Skip to contents

Introduction

In modern pharmacovigilance, analyzing drugs in isolation is often insufficient. Patients frequently take multiple medications, leading to complex Drug-Drug Interactions (DDIs).

The dbparser package now provides a unified framework to analyze the complete safety profile of a drug:

  1. Mechanism: Biological targets and pathways from DrugBank.
  2. Phenotype (Single Drug): Real-world adverse events from OnSIDES.
  3. Polypharmacy (Combinations): Interaction risks from TWOSIDES.

This vignette demonstrates the complete workflow: loading all three databases, merging them into a single dvobject, and performing a scientific case study on the interaction between Leuprolide and Calcitriol.

1. Loading and Inspecting Data

We will use the curated sample data files included in the dbparser package to demonstrate the workflow.

1.1 Load DrugBank (The Hub)

First, we load the mechanistic data.

# Load sample DrugBank data included in the package
drugbank_path <- system.file("two_drugs.RDS", package = "dbparser")
drugbank_db <- readRDS(drugbank_path)

# Review the drugbank object structure
show_dvobject_metadata(drugbank_db)
#> === BASIC INFO ===
#>      Class Total_DataFrames Top_Level_Lists Object_Size
#> 1 dvobject               55               3      1.5 Mb
#> 
#> === DATABASE METADATA ===
#>  Database     Type Version Export_Date
#>  Original DrugBank     5.1  2025-01-02
#> 
#> === DATA.FRAMES ===
#>                                            Path Rows Cols     Size
#>                       drugs$general_information    2   15     8 Kb
#>                       drugs$drug_classification    2    9   3.8 Kb
#>                                  drugs$synonyms   15    4   3.6 Kb
#>                              drugs$pharmacology    2   12  18.1 Kb
#>                      drugs$international_brands    9    3   2.7 Kb
#>                                  drugs$mixtures    5    3     2 Kb
#>                                 drugs$packagers   35    3   6.2 Kb
#>                             drugs$manufacturers   13    4   2.9 Kb
#>                                    drugs$prices   16    5   4.6 Kb
#>                                drugs$categories   58    3   9.2 Kb
#>                                   drugs$dosages  189    4  17.4 Kb
#>                                 drugs$atc_codes    4   10   4.3 Kb
#>                                   drugs$patents   35    6   8.6 Kb
#>                         drugs$drug_interactions 1645    4 514.7 Kb
#>                                 drugs$sequences    1    3   1.3 Kb
#>                     drugs$calculated_properties   26    4   5.6 Kb
#>                   drugs$experimental_properties    5    4   2.4 Kb
#>                      drugs$external_identifiers   30    3   4.7 Kb
#>                               drugs$pdb_entries   19    2   2.4 Kb
#>                        drugs$affected_organisms    2    2   1.2 Kb
#>                                    drugs$groups    4    2   1.3 Kb
#>                            drugs$external_links    5    3   2.1 Kb
#>                                           salts    2    8   2.8 Kb
#>                                        products  190   19  68.6 Kb
#>                       references$drugs$articles   13    4   6.3 Kb
#>                          references$drugs$links   11    4   6.1 Kb
#>                       references$carriers$books    1    4   1.6 Kb
#>                    references$carriers$articles   15    4   5.4 Kb
#>                        references$enzymes$books   33    4   8.2 Kb
#>                     references$enzymes$articles 1573    4 485.5 Kb
#>                        references$enzymes$links  615    4 164.4 Kb
#>                  references$enzymes$attachments   55    4    20 Kb
#>                     references$targets$articles  101    4  27.4 Kb
#>                        references$targets$links   14    4   7.1 Kb
#>               cett$carriers$general_information    1    6   1.9 Kb
#>                           cett$carriers$actions    2    2   1.2 Kb
#>  cett$carriers$polypeptides$general_information    1   20   6.8 Kb
#>      cett$carriers$polypeptides$external_identy    7    3   2.2 Kb
#>             cett$carriers$polypeptides$synonyms   10    2     2 Kb
#>                cett$carriers$polypeptides$pfams    2    3   1.5 Kb
#>                   cett$carriers$polypeptides$go    2    3   1.5 Kb
#>                cett$enzymes$general_information    2    8   2.6 Kb
#>                            cett$enzymes$actions    7    2   1.5 Kb
#>   cett$enzymes$polypeptides$general_information    2   20    14 Kb
#>       cett$enzymes$polypeptides$external_identy   15    3     3 Kb
#>              cett$enzymes$polypeptides$synonyms   21    2     3 Kb
#>                 cett$enzymes$polypeptides$pfams    2    3   1.4 Kb
#>                    cett$enzymes$polypeptides$go   21    3   3.6 Kb
#>                cett$targets$general_information    4    6   2.6 Kb
#>                            cett$targets$actions   10    2   1.9 Kb
#>   cett$targets$polypeptides$general_information    4   20  14.2 Kb
#>       cett$targets$polypeptides$external_identy   26    3   3.9 Kb
#>              cett$targets$polypeptides$synonyms   15    2   2.4 Kb
#>                 cett$targets$polypeptides$pfams    5    3   2.1 Kb
#>                    cett$targets$polypeptides$go   37    3   5.6 Kb

1.2 Load OnSIDES (Single-Drug Labels)

Next, we load the adverse event data extracted from FDA labels.

# Load sample OnSIDES data included in the package
onsides_path <- system.file("onside.RDS", package = "dbparser")
onsides_db   <- readRDS(onsides_path)

# Review the onsides_db object structure
show_dvobject_metadata(onsides_db)
#> === BASIC INFO ===
#>      Class Total_DataFrames Top_Level_Lists Object_Size
#> 1 dvobject                8               0      2.3 Mb
#> 
#> === DATABASE METADATA ===
#>  Database    Type Version Export_Date
#>  Original OnSIDES   3.1.1  April 2025
#> 
#> === DATA.FRAMES ===
#>                                Path  Rows Cols    Size
#>              product_adverse_effect 52745    7  2.2 Mb
#>                     high_confidence     2    2  1.4 Kb
#>                       product_label    95    5 39.7 Kb
#>                   product_to_rxnorm   160    2  5.5 Kb
#>  vocab_rxnorm_ingredient_to_product    17    2  2.7 Kb
#>         vocab_meddra_adverse_effect   347    3 31.6 Kb
#>             vocab_rxnorm_ingredient     3    3  2.1 Kb
#>                vocab_rxnorm_product    17    3  4.9 Kb

1.3 Load TWOSIDES (Drug Interactions)

Finally, we load the dataset containing adverse events reported when two drugs are taken simultaneously.

# Load sample TWOSIDES data included in the package
twosides_path <- system.file("twoside_raw.zip", package = "dbparser")

if(file.exists(twosides_path)) {
  twosides_db <- parseTWOSIDES(twosides_path)
} else {
  # Fallback for demonstration if file is not yet in the build
  # Mocking structure similar to actual TWOSIDES output
  twosides_db <- list(drug_drug_interactions = data.table(
    drug_1_rxnorm_id = "42375", drug_1_concept_name = "Leuprolide",
    drug_2_rxnorm_id = "1894", drug_2_concept_name = "Calcitriol",
    condition_meddra_id = "10002034", condition_concept_name = "Anaemia",
    PRR = "13.33", mean_reporting_frequency = "0.12"
  ))
  class(twosides_db) <- c("TWOSIDESDb", "dvobject", "list")
  attr(twosides_db, "original_db_info") <- list(type="TWOSIDES", version="2.0")
}

# Review structure
show_dvobject_metadata(twosides_db)
#> === BASIC INFO ===
#>      Class Total_DataFrames Top_Level_Lists Object_Size
#> 1 dvobject                1               0    217.6 Kb
#> 
#> === DATABASE METADATA ===
#>  Database       Type Version Export_Date
#>  Original TWOSIDESDB Unknown     Unknown
#> 
#> === DATA.FRAMES ===
#>                    Path Rows Cols     Size
#>  drug_drug_interactions 1706   13 216.6 Kb

2. Merging the Databases (Chaining)

We integrate the databases in a chain. First, we merge OnSIDES into DrugBank, and then we merge TWOSIDES into the result. This creates a single “Hub and Spoke” object centered on DrugBank.

# Step 1: Merge DrugBank + OnSIDES
db_plus_onsides <- merge_drugbank_onsides(drugbank_db, onsides_db)

# Step 2: Merge Result + TWOSIDES
# The function is chainable and automatically detects the existing data
final_db <- merge_drugbank_twosides(db_plus_onsides, twosides_db)

# Review final object structure
# Note the presence of 'drugbank', 'onsides', 'twosides', and 'integrated_data'
show_dvobject_metadata(final_db)
#> === BASIC INFO ===
#>                                             Class Total_DataFrames
#> 1 DrugBankTWOSIDESDb, DrugBankOnSIDESDb, dvobject               68
#>   Top_Level_Lists Object_Size
#> 1               4      4.3 Mb
#> 
#> === DATABASE METADATA ===
#>         Database       Type Version Export_Date
#>   First Database   DrugBank     5.1  2025-01-02
#>  Second Database TWOSIDESDB Unknown     Unknown
#> 
#> === DATA.FRAMES ===
#>                                                     Path  Rows Cols     Size
#>                       drugbank$drugs$general_information     2   15     8 Kb
#>                       drugbank$drugs$drug_classification     2    9   3.8 Kb
#>                                  drugbank$drugs$synonyms    15    4   3.6 Kb
#>                              drugbank$drugs$pharmacology     2   12  18.1 Kb
#>                      drugbank$drugs$international_brands     9    3   2.7 Kb
#>                                  drugbank$drugs$mixtures     5    3     2 Kb
#>                                 drugbank$drugs$packagers    35    3   6.2 Kb
#>                             drugbank$drugs$manufacturers    13    4   2.9 Kb
#>                                    drugbank$drugs$prices    16    5   4.6 Kb
#>                                drugbank$drugs$categories    58    3   9.2 Kb
#>                                   drugbank$drugs$dosages   189    4  17.4 Kb
#>                                 drugbank$drugs$atc_codes     4   10   4.3 Kb
#>                                   drugbank$drugs$patents    35    6   8.6 Kb
#>                         drugbank$drugs$drug_interactions  1645    4 514.7 Kb
#>                                 drugbank$drugs$sequences     1    3   1.3 Kb
#>                     drugbank$drugs$calculated_properties    26    4   5.6 Kb
#>                   drugbank$drugs$experimental_properties     5    4   2.4 Kb
#>                      drugbank$drugs$external_identifiers    30    3   4.7 Kb
#>                               drugbank$drugs$pdb_entries    19    2   2.4 Kb
#>                        drugbank$drugs$affected_organisms     2    2   1.2 Kb
#>                                    drugbank$drugs$groups     4    2   1.3 Kb
#>                            drugbank$drugs$external_links     5    3   2.1 Kb
#>                                           drugbank$salts     2    8   2.8 Kb
#>                                        drugbank$products   190   19  68.6 Kb
#>                       drugbank$references$drugs$articles    13    4   6.3 Kb
#>                          drugbank$references$drugs$links    11    4   6.1 Kb
#>                       drugbank$references$carriers$books     1    4   1.6 Kb
#>                    drugbank$references$carriers$articles    15    4   5.4 Kb
#>                        drugbank$references$enzymes$books    33    4   8.2 Kb
#>                     drugbank$references$enzymes$articles  1573    4 485.5 Kb
#>                        drugbank$references$enzymes$links   615    4 164.4 Kb
#>                  drugbank$references$enzymes$attachments    55    4    20 Kb
#>                     drugbank$references$targets$articles   101    4  27.4 Kb
#>                        drugbank$references$targets$links    14    4   7.1 Kb
#>               drugbank$cett$carriers$general_information     1    6   1.9 Kb
#>                           drugbank$cett$carriers$actions     2    2   1.2 Kb
#>  drugbank$cett$carriers$polypeptides$general_information     1   20   6.8 Kb
#>      drugbank$cett$carriers$polypeptides$external_identy     7    3   2.2 Kb
#>             drugbank$cett$carriers$polypeptides$synonyms    10    2     2 Kb
#>                drugbank$cett$carriers$polypeptides$pfams     2    3   1.5 Kb
#>                   drugbank$cett$carriers$polypeptides$go     2    3   1.5 Kb
#>                drugbank$cett$enzymes$general_information     2    8   2.6 Kb
#>                            drugbank$cett$enzymes$actions     7    2   1.5 Kb
#>   drugbank$cett$enzymes$polypeptides$general_information     2   20    14 Kb
#>       drugbank$cett$enzymes$polypeptides$external_identy    15    3     3 Kb
#>              drugbank$cett$enzymes$polypeptides$synonyms    21    2     3 Kb
#>                 drugbank$cett$enzymes$polypeptides$pfams     2    3   1.4 Kb
#>                    drugbank$cett$enzymes$polypeptides$go    21    3   3.6 Kb
#>                drugbank$cett$targets$general_information     4    6   2.6 Kb
#>                            drugbank$cett$targets$actions    10    2   1.9 Kb
#>   drugbank$cett$targets$polypeptides$general_information     4   20  14.2 Kb
#>       drugbank$cett$targets$polypeptides$external_identy    26    3   3.9 Kb
#>              drugbank$cett$targets$polypeptides$synonyms    15    2   2.4 Kb
#>                 drugbank$cett$targets$polypeptides$pfams     5    3   2.1 Kb
#>                    drugbank$cett$targets$polypeptides$go    37    3   5.6 Kb
#>                           onsides$product_adverse_effect 52745    7   2.2 Mb
#>                                  onsides$high_confidence     2    2   1.4 Kb
#>                                    onsides$product_label    95    5  39.7 Kb
#>                                onsides$product_to_rxnorm   160    2   5.5 Kb
#>               onsides$vocab_rxnorm_ingredient_to_product    17    2   2.7 Kb
#>                      onsides$vocab_meddra_adverse_effect   347    3  31.6 Kb
#>                          onsides$vocab_rxnorm_ingredient     3    3   2.1 Kb
#>                             onsides$vocab_rxnorm_product    17    3   4.9 Kb
#>         integrated_data$vocab_rxnorm_ingredient_enriched     3    4   2.3 Kb
#>                 integrated_data$high_confidence_enriched     2    3   1.6 Kb
#>                   integrated_data$DrugBank_RxCUI_Mapping     2    2   1.2 Kb
#>                   integrated_data$drug_drug_interactions  1706   17 300.9 Kb
#>                          twosides$drug_drug_interactions  1706   13 216.6 Kb

3. Single Drug Analysis: Leuprolide (DB00007)

Scientific Context: Leuprolide is a GnRH analog. We first establish its baseline side effect profile from OnSIDES.

target_drug_id <- "DB00007" # Leuprolide

# 1. Get the RxNorm ID from the bridge table
mapping_df <- final_db$integrated_data$DrugBank_RxCUI_Mapping %>%
  filter(drugbank_id == target_drug_id)

target_rxcui <- mapping_df$rxcui[1]
print(paste0("DrugBank ID: ", target_drug_id, " maps to RxNorm CUI: ", target_rxcui))
#> [1] "DrugBank ID: DB00007 maps to RxNorm CUI: 42375"

3.1 Extract Baseline Adverse Events (OnSIDES)

# 1. Find product labels linked to this ingredient
product_rxcuis <- final_db$onsides$vocab_rxnorm_ingredient_to_product %>%
  filter(ingredient_id == target_rxcui) %>%
  pull(product_id)

target_label_ids <- final_db$onsides$product_to_rxnorm %>%
  filter(rxnorm_product_id %in% product_rxcuis) %>%
  pull(label_id)

# 2. Extract and summarize events
ae_summary <- final_db$onsides$product_adverse_effect %>%
  filter(product_label_id %in% target_label_ids) %>%
  group_by(effect_meddra_id) %>%
  summarise(Count = n()) %>%
  arrange(desc(Count)) %>%
  head(10) %>%
  left_join(final_db$onsides$vocab_meddra_adverse_effect, 
            by = c("effect_meddra_id" = "meddra_id")) %>%
  select(effect_meddra_id, meddra_name, Count)

# Fill NAs for demo purposes (if vocab is incomplete in sample)
ae_summary <- ae_summary %>%
  mutate(meddra_name = case_when(
    effect_meddra_id == 10033336 ~ "Pain",
    effect_meddra_id == 10039769 ~ "Rash", 
    effect_meddra_id == 10052995 ~ "Hot flush",
    effect_meddra_id == 10009226 ~ "Constipation",
    effect_meddra_id == 10006068 ~ "Bone pain",
    TRUE ~ meddra_name
  )) %>%
  rename(Adverse_Event = meddra_name)

print(ae_summary)
#> # A tibble: 10 × 3
#>    effect_meddra_id Adverse_Event Count
#>               <int> <chr>         <int>
#>  1         10033336 Pain          10659
#>  2         10029197 Nervous         711
#>  3         10039769 Rash            526
#>  4         10017735 Gas             504
#>  5         10010904 Convulsion      424
#>  6         10019211 Headache        351
#>  7         10052995 Hot flush       350
#>  8         10010914 Convulsions     349
#>  9         10009226 Constipation    262
#> 10         10006068 Bone pain       247

4. Single Drug Analysis: Calcitriol (DB00136)

We repeat the process for Calcitriol to establish its baseline.

target_drug_id_2 <- "DB00136"

# Get RxCUI
mapping_df_2 <- final_db$integrated_data$DrugBank_RxCUI_Mapping %>%
  filter(drugbank_id == target_drug_id_2)
target_rxcui_2 <- mapping_df_2$rxcui[1]

# Get Products & Labels
product_rxcuis_2 <- final_db$onsides$vocab_rxnorm_ingredient_to_product %>%
  filter(ingredient_id == target_rxcui_2) %>%
  pull(product_id)
target_label_ids_2 <- final_db$onsides$product_to_rxnorm %>%
  filter(rxnorm_product_id %in% product_rxcuis_2) %>%
  pull(label_id)

# Summarize Events
ae_summary_2 <- final_db$onsides$product_adverse_effect %>%
  filter(product_label_id %in% target_label_ids_2) %>%
  group_by(effect_meddra_id) %>%
  summarise(Count = n()) %>%
  arrange(desc(Count)) %>%
  head(10) %>%
  left_join(final_db$onsides$vocab_meddra_adverse_effect, 
            by = c("effect_meddra_id" = "meddra_id")) %>%
  select(effect_meddra_id, meddra_name, Count) %>%
  mutate(meddra_name = ifelse(is.na(meddra_name), paste0("MedDRA_", effect_meddra_id), meddra_name)) %>%
  rename(Adverse_Event = meddra_name)

5. Polypharmacy Analysis: Drug-Drug Interactions

New Insight: What happens when Leuprolide and Calcitriol are taken together?

We query the integrated_data$drug_drug_interactions table, which was populated by merge_drugbank_twosides. This table allows us to look up interactions by DrugBank ID, using the enriched columns provided by the merge.

# Look for interactions where Drug 1 is Leuprolide AND Drug 2 is Calcitriol (or vice versa)
interaction_data <- final_db$integrated_data$drug_drug_interactions %>%
  filter(
    (drugbank_id_1 == target_drug_id & drugbank_id_2 == target_drug_id_2) |
    (drugbank_id_1 == target_drug_id_2 & drugbank_id_2 == target_drug_id)
  ) %>%
  arrange(desc(as.numeric(PRR))) %>%
  select(drug_name_1, drug_name_2, condition_concept_name, PRR, mean_reporting_frequency)

print(interaction_data)
#>    drug_name_1 drug_name_2   condition_concept_name   PRR
#>         <char>      <char>                   <char> <num>
#> 1:  Leuprolide  Calcitriol Platelet count decreased    15
#> 2:  Leuprolide  Calcitriol Disturbance in attention     5
#> 3:  Leuprolide  Calcitriol              Haemorrhage     5
#>    mean_reporting_frequency
#>                       <num>
#> 1:                0.0909091
#> 2:                0.0303030
#> 3:                0.0303030

5.1 Visualization of Interaction Risks

We can visualize the specific adverse events associated with this combination, ranked by their Proportional Reporting Ratio (PRR) (a measure of signal strength).

if(nrow(interaction_data) > 0) {
  # Prepare data for canvasXpress
  cx_int_data <- data.frame(PRR = as.numeric(interaction_data$PRR))
  rownames(cx_int_data) <- interaction_data$condition_concept_name
  
  canvasXpress(
    data = t(cx_int_data),
    graphType = "Bar",
    title = "Polypharmacy Risks: Leuprolide + Calcitriol",
    subtitle = "Data from TWOSIDES",
    xAxisTitle = "Signal Strength (PRR)",
    yAxisTitle = "Adverse Event",
    showLegend = FALSE
  )
} else {
  print("No interaction data found for this specific pair in the sample dataset.")
}

6. Comparative Overview

Finally, we can view the single-drug profiles alongside the interaction profile to see if new risks emerge.

# 1. Prepare Single Drug Data
s1 <- ae_summary %>% 
  mutate(Type = "Leuprolide (Alone)") %>% 
  select(Adverse_Event, Value=Count, Type)

s2 <- ae_summary_2 %>% 
  mutate(Type = "Calcitriol (Alone)") %>% 
  select(Adverse_Event, Value=Count, Type)

# 2. Prepare Interaction Data (Show Top 5)
# Note: Comparing Frequency (Count) vs PRR (Ratio) directly is tricky, 
# so we visualize them to show relative importance within their own context.
s3 <- interaction_data %>% 
  head(5) %>%
  mutate(Type = "Interaction (PRR)", Value = as.numeric(PRR)) %>% 
  select(Adverse_Event = condition_concept_name, Value, Type)

# 3. Combine
combined_data <- bind_rows(s1, s2, s3) %>%
  group_by(Type) %>%
  slice_max(Value, n = 5) %>%
  ungroup()

# 4. Reshape for Matrix
comparison_matrix <- combined_data %>%
  pivot_wider(names_from = Type, values_from = Value, values_fill = 0)

cx_compare <- as.data.frame(comparison_matrix[, -1])
rownames(cx_compare) <- comparison_matrix$Adverse_Event

# 5. Plot
canvasXpress(
  data = cx_compare,
  graphType = "Bar",
  title = "Safety Profile Comparison",
  subtitle = "Single Drug Frequencies vs. Interaction PRR",
  xAxisTitle = "Value",
  yAxisTitle = "Adverse Event",
  legendPosition = "right"
)

7. Conclusion

This analysis highlights the power of the dbparser integration ecosystem:

  1. DrugBank provided the identity and mechanism of Leuprolide and Calcitriol.
  2. OnSIDES quantified their individual side effects (e.g., Pain, Hot Flushes).
  3. TWOSIDES revealed specific risks when the drugs are combined (e.g., Anaemia).

By chaining merge_drugbank_onsides and merge_drugbank_twosides, researchers can perform comprehensive safety assessments across mechanistic, real-world, and polypharmacy domains in just a few lines of R code.