Full text search of Elasticsearch
Usage
Search(
conn,
index = NULL,
type = NULL,
q = NULL,
df = NULL,
analyzer = NULL,
default_operator = NULL,
explain = NULL,
source = NULL,
fields = NULL,
sort = NULL,
track_scores = NULL,
timeout = NULL,
terminate_after = NULL,
from = NULL,
size = NULL,
search_type = NULL,
lowercase_expanded_terms = NULL,
analyze_wildcard = NULL,
version = NULL,
lenient = NULL,
body = list(),
raw = FALSE,
asdf = FALSE,
track_total_hits = TRUE,
time_scroll = NULL,
search_path = "_search",
stream_opts = list(),
ignore_unavailable = FALSE,
...
)
Arguments
- conn
an Elasticsearch connection object, see
connect
- index
Index name, one or more
- type
Document type. Note that
type
is deprecated in Elasticsearch v7 and greater, and removed in Elasticsearch v8. We will strive to support types for folks using older ES versions- q
The query string (maps to the query_string query, see Query String Query for more details). See https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html for documentation and examples.
- df
(character) The default field to use when no field prefix is defined within the query.
- analyzer
(character) The analyzer name to be used when analyzing the query string.
- default_operator
(character) The default operator to be used, can be
AND
orOR
. Default:OR
- explain
(logical) For each hit, contain an explanation of how scoring of the hits was computed. Default:
FALSE
- source
(logical) Set to
FALSE
to disable retrieval of the_source
field. You can also retrieve part of the document by using_source_include
&_source_exclude
(see thebody
documentation for more details). You can also include a comma-delimited string of fields from the source document that you want back. See also the fields parameter- fields
(character) The selective stored fields of the document to return for each hit. Not specifying any value will cause no fields to return. Note that in Elasticsearch v5 and greater, fields parameter has changed to stored_fields, which is not on by default. You can however, pass fields to source parameter
- sort
(character) Sorting to perform. Can either be in the form of fieldName, or
fieldName:asc
/fieldName:desc
. The fieldName can either be an actual field within the document, or the special_score
name to indicate sorting based on scores. There can be several sort parameters (order is important).- track_scores
(logical) When sorting, set to
TRUE
in order to still track scores and return them as part of each hit.- timeout
(numeric) A search timeout, bounding the search request to be executed within the specified time value and bail with the hits accumulated up to that point when expired. Default: no timeout.
- terminate_after
(numeric) The maximum number of documents to collect for each shard, upon reaching which the query execution will terminate early. If set, the response will have a boolean field terminated_early to indicate whether the query execution has actually terminated_early. Default: no terminate_after
- from
(character) The starting from index of the hits to return. Pass in as a character string to avoid problems with large number conversion to scientific notation. Default: 0
- size
(character) The number of hits to return. Pass in as a character string to avoid problems with large number conversion to scientific notation. Default: 10. The default maximum is 10,000 - however, you can change this default maximum by changing the
index.max_result_window
index level parameter.- search_type
(character) The type of the search operation to perform. Can be
query_then_fetch
(default) ordfs_query_then_fetch
. Typesscan
andcount
are deprecated. See Elasticsearch docs for more details on the different types of search that can be performed.- lowercase_expanded_terms
(logical) Should terms be automatically lowercased or not. Default:
TRUE
.- analyze_wildcard
(logical) Should wildcard and prefix queries be analyzed or not. Default:
FALSE
.- version
(logical) Print the document version with each document.
- lenient
(logical) If
TRUE
will cause format based failures (like providing text to a numeric field) to be ignored. Default:NULL
- body
Query, either a list or json.
- raw
(logical) If
FALSE
(default), data is parsed to list. IfTRUE
, then raw JSON returned- asdf
(logical) If
TRUE
, usefromJSON
to parse JSON directly to a data.frame. IfFALSE
(Default), list output is given.- track_total_hits
(logical, numeric) If
TRUE
will always track the number of hits that match the query accurately. IfFALSE
will count documents accurately up to 10000 documents. Ifis.integer
will count documents accurately up to the number. Default:TRUE
- time_scroll
(character) Specify how long a consistent view of the index should be maintained for scrolled search, e.g., "30s", "1m". See units-time
- search_path
(character) The path to use for searching. Default to
_search
, but in some cases you may already have that in the base url set usingconnect()
, in which case you can set this toNULL
- stream_opts
(list) A list of options passed to
stream_out
- Except that you can't passx
as that's the data that's streamed out, and pass a file path instead of a connection tocon
.pagesize
param doesn't do much as that's more or less controlled by paging with ES.(logical) What to do if an specified index name doesn't exist. If set to
TRUE
then those indices are ignored.- ...
Curl args passed on to
verb-POST
Details
This function name has the "S" capitalized to avoid conflict with the function
base::search
. I hate mixing cases, as I think it confuses users, but in this case
it seems neccessary.
profile
The Profile API provides detailed timing information about the execution of individual components in a search request. See https://www.elastic.co/guide/en/elasticsearch/reference/current/search-profile.html for more information
In a body query, you can set to profile: true
to enable profiling
results. e.g.
{
"profile": true,
"query" : {
"match" : { "message" : "some number" }
}
}
References
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-search.html https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
Examples
if (FALSE) { # \dontrun{
# make connection object
(x <- connect())
# load some data
if (!index_exists(x, "shakespeare")) {
shakespeare <- system.file("examples", "shakespeare_data.json",
package = "elastic")
shakespeare <- type_remover(shakespeare)
invisible(docs_bulk(x, shakespeare))
}
if (!index_exists(x, "gbif")) {
gbif <- system.file("examples", "gbif_data.json",
package = "elastic")
gbif <- type_remover(gbif)
invisible(docs_bulk(x, gbif))
}
if (!index_exists(x, "plos")) {
plos <- system.file("examples", "plos_data.json",
package = "elastic")
plos <- type_remover(plos)
invisible(docs_bulk(x, plos))
}
# URI string queries
Search(x, index="shakespeare")
## if you're using an older ES version, you may have types
if (gsub("\\.", "", x$ping()$version$number) < 700) {
Search(x, index="shakespeare", type="act")
Search(x, index="shakespeare", type="scene")
Search(x, index="shakespeare", type="line")
}
## Return certain fields
if (gsub("\\.", "", x$ping()$version$number) < 500) {
### ES < v5
Search(x, index="shakespeare", fields=c('play_name','speaker'))
} else {
### ES > v5
Search(x, index="shakespeare", body = '{
"_source": ["play_name", "speaker"]
}')
}
## Search multiple indices
Search(x, index = "gbif")$hits$total$value
Search(x, index = "shakespeare")$hits$total$value
Search(x, index = c("gbif", "shakespeare"))$hits$total$value
## search_type
Search(x, index="shakespeare", search_type = "query_then_fetch")
Search(x, index="shakespeare", search_type = "dfs_query_then_fetch")
### search type "scan" is gone - use time_scroll instead
Search(x, index="shakespeare", time_scroll = "2m")
### search type "count" is gone - use size=0 instead
Search(x, index="shakespeare", size = 0)$hits$total$value
## search exists check
### use size set to 0 and terminate_after set to 1
### if there are > 0 hits, then there are matching documents
Search(x, index="shakespeare", size = 0, terminate_after = 1)
## sorting
### if ES >5, we need to make sure fielddata is turned on for a field
### before using it for sort
if (gsub("\\.", "", x$ping()$version$number) >= 500) {
if (index_exists(x, "shakespeare")) index_delete(x, "shakespeare")
index_create(x, "shakespeare")
mapping_create(x, "shakespeare", body = '{
"properties": {
"speaker": {
"type": "text",
"fielddata": true
}
}
}'
)
shakespeare <- system.file("examples", "shakespeare_data.json",
package = "elastic")
shakespeare <- type_remover(shakespeare)
invisible(docs_bulk(x, shakespeare))
z <- Search(x, index="shakespeare", sort="speaker", size = 30)
vapply(z$hits$hits, function(w) w$`_source`$speaker, "")
}
if (gsub("\\.", "", x$ping()$version$number) < 500) {
Search(x, index="shakespeare", type="line", sort="speaker:desc",
fields='speaker')
Search(x, index="shakespeare", type="line",
sort=c("speaker:desc","play_name:asc"), fields=c('speaker','play_name'))
}
## pagination
Search(x, index="shakespeare", size=1)$hits$hits
Search(x, index="shakespeare", size=1, from=1)$hits$hits
## queries
### Search in all fields
Search(x, index="shakespeare", q="york")
### Searchin specific fields
Search(x, index="shakespeare", q="speaker:KING HENRY IV")$hits$total$value
### Exact phrase search by wrapping in quotes
Search(x, index="shakespeare", q='speaker:"KING HENRY IV"')$hits$total$value
### can specify operators between multiple words parenthetically
Search(x, index="shakespeare", q="speaker:(HENRY OR ARCHBISHOP)")$hits$total$value
### where the field line_number has no value (or is missing)
Search(x, index="shakespeare", q="_missing_:line_number")$hits$total$value
### where the field line_number has any non-null value
Search(x, index="shakespeare", q="_exists_:line_number")$hits$total$value
### wildcards, either * or ?
Search(x, index="shakespeare", q="*ay")$hits$total$value
Search(x, index="shakespeare", q="m?y")$hits$total$value
### regular expressions, wrapped in forward slashes
Search(x, index="shakespeare", q="text_entry:/[a-z]/")$hits$total$value
### fuzziness
Search(x, index="shakespeare", q="text_entry:ma~")$hits$total$value
Search(x, index="shakespeare", q="text_entry:the~2")$hits$total$value
Search(x, index="shakespeare", q="text_entry:the~1")$hits$total$value
### Proximity searches
Search(x, index="shakespeare", q='text_entry:"as hath"~5')$hits$total$value
Search(x, index="shakespeare", q='text_entry:"as hath"~10')$hits$total$value
### Ranges, here where line_id value is between 10 and 20
Search(x, index="shakespeare", q="line_id:[10 TO 20]")$hits$total$value
### Grouping
Search(x, index="shakespeare", q="(hath OR as) AND the")$hits$total$value
# Limit number of hits returned with the size parameter
Search(x, index="shakespeare", size=1)
# Give explanation of search in result
Search(x, index="shakespeare", size=1, explain=TRUE)
## terminate query after x documents found
## setting to 1 gives back one document for each shard
Search(x, index="shakespeare", terminate_after=1)
## or set to other number
Search(x, index="shakespeare", terminate_after=2)
## Get version number for each document
Search(x, index="shakespeare", version=TRUE, size=2)
## Get raw data
Search(x, index="shakespeare", raw = TRUE)
## Curl options
### verbose
out <- Search(x, index="shakespeare", verbose = TRUE)
# Query DSL searches - queries sent in the body of the request
## Pass in as an R list
### if ES >5, we need to make sure fielddata is turned on for a field
### before using it for aggregations
if (gsub("\\.", "", x$ping()$version$number) >= 500) {
mapping_create(x, "shakespeare", update_all_types = TRUE, body = '{
"properties": {
"text_entry": {
"type": "text",
"fielddata": true
}
}
}')
aggs <- list(aggs = list(stats = list(terms = list(field = "text_entry"))))
Search(x, index="shakespeare", body=aggs)
}
### if ES >5, you don't need to worry about fielddata
if (gsub("\\.", "", x$ping()$version$number) < 500) {
aggs <- list(aggs = list(stats = list(terms = list(field = "text_entry"))))
Search(x, index="shakespeare", body=aggs)
}
## or pass in as json query with newlines, easy to read
aggs <- '{
"aggs": {
"stats" : {
"terms" : {
"field" : "speaker"
}
}
}
}'
Search(x, index="shakespeare", body=aggs, asdf=TRUE, size = 0)
## or pass in collapsed json string
aggs <- '{"aggs":{"stats":{"terms":{"field":"text_entry"}}}}'
Search(x, index="shakespeare", body=aggs)
## Aggregations
### Histograms
aggs <- '{
"aggs": {
"latbuckets" : {
"histogram" : {
"field" : "decimalLatitude",
"interval" : 5
}
}
}
}'
Search(x, index="gbif", body=aggs, size=0)
### Histograms w/ more options
aggs <- '{
"aggs": {
"latbuckets" : {
"histogram" : {
"field" : "decimalLatitude",
"interval" : 5,
"min_doc_count" : 0,
"extended_bounds" : {
"min" : -90,
"max" : 90
}
}
}
}
}'
Search(x, index="gbif", body=aggs, size=0)
### Ordering the buckets by their doc_count - ascending:
aggs <- '{
"aggs": {
"latbuckets" : {
"histogram" : {
"field" : "decimalLatitude",
"interval" : 5,
"min_doc_count" : 0,
"extended_bounds" : {
"min" : -90,
"max" : 90
},
"order" : {
"_count" : "desc"
}
}
}
}
}'
out <- Search(x, index="gbif", body=aggs, size=0)
lapply(out$aggregations$latbuckets$buckets, data.frame)
### By default, the buckets are returned as an ordered array. It is also possible to
### request the response as a hash instead keyed by the buckets keys:
aggs <- '{
"aggs": {
"latbuckets" : {
"histogram" : {
"field" : "decimalLatitude",
"interval" : 10,
"keyed" : true
}
}
}
}'
Search(x, index="gbif", body=aggs, size=0)
# match query
match <- '{"query": {"match" : {"text_entry" : "Two Gentlemen"}}}'
Search(x, index="shakespeare", body=match)
# multi-match (multiple fields that is) query
mmatch <- '{"query": {"multi_match" : {"query" : "henry", "fields": ["text_entry","play_name"]}}}'
Search(x, index="shakespeare", body=mmatch)
# bool query
mmatch <- '{
"query": {
"bool" : {
"must_not" : {
"range" : {
"speech_number" : {
"from" : 1, "to": 5
}}}}}}'
Search(x, index="shakespeare", body=mmatch)
# Boosting query
boost <- '{
"query" : {
"boosting" : {
"positive" : {
"term" : {
"play_name" : "henry"
}
},
"negative" : {
"term" : {
"text_entry" : "thou"
}
},
"negative_boost" : 0.8
}
}
}'
Search(x, index="shakespeare", body=boost)
# Fuzzy query
## fuzzy query on numerics
fuzzy <- list(query = list(fuzzy = list(text_entry = "arms")))
Search(x, index="shakespeare", body=fuzzy)$hits$total$value
fuzzy <- list(query = list(fuzzy = list(text_entry = list(value = "arms", fuzziness = 4))))
Search(x, index="shakespeare", body=fuzzy)$hits$total$value
# geoshape query
## not working yets
geo <- list(query = list(geo_shape = list(location = list(shape = list(type = "envelope",
coordinates = "[[2,10],[10,20]]")))))
geo <- '{
"query": {
"geo_shape": {
"location": {
"point": {
"type": "envelope",
"coordinates": [[2,0],[2.93,100]]
}
}
}
}
}'
# Search(x, index="gbifnewgeo", body=geo)
# range query
## with numeric
body <- list(query=list(range=list(decimalLongitude=list(gte=1, lte=3))))
Search(x, 'gbif', body=body)$hits$total$value
body <- list(query=list(range=list(decimalLongitude=list(gte=2.9, lte=10))))
Search(x, 'gbif', body=body)$hits$total$value
## with dates
body <- list(query=list(range=list(eventDate=list(gte="2012-01-01", lte="now"))))
Search(x, 'gbif', body=body)$hits$total$value
body <- list(query=list(range=list(eventDate=list(gte="2014-01-01", lte="now"))))
Search(x, 'gbif', body=body)$hits$total$value
# more like this query (more_like_this can be shortened to mlt)
body <- '{
"query": {
"more_like_this": {
"fields": ["title"],
"like": "and then",
"min_term_freq": 1,
"max_query_terms": 12
}
}
}'
Search(x, 'plos', body=body)$hits$total$value
body <- '{
"query": {
"more_like_this": {
"fields": ["abstract","title"],
"like": "cell",
"min_term_freq": 1,
"max_query_terms": 12
}
}
}'
Search(x, 'plos', body=body)$hits$total$value
# Highlighting
body <- '{
"query": {
"query_string": {
"query" : "cell"
}
},
"highlight": {
"fields": {
"title": {"number_of_fragments": 2}
}
}
}'
out <- Search(x, 'plos', body=body)
out$hits$total$value
sapply(out$hits$hits, function(x) x$`_source`$title[[1]])
### Common terms query
body <- '{
"query" : {
"match": {
"text_entry": {
"query": "this is"
}
}
}
}'
Search(x, 'shakespeare', body=body)
## Scrolling search - instead of paging
res <- Search(x, index = 'shakespeare', q="a*", time_scroll="1m")
scroll(x, res$`_scroll_id`)
res <- Search(x, index = 'shakespeare', q="a*", time_scroll="5m")
out <- list()
hits <- 1
while(hits != 0){
res <- scroll(x, res$`_scroll_id`)
hits <- length(res$hits$hits)
if(hits > 0)
out <- c(out, res$hits$hits)
}
### Sliced scrolling
#### For scroll queries that return a lot of documents it is possible to
#### split the scroll in multiple slices which can be consumed independently
body1 <- '{
"slice": {
"id": 0,
"max": 2
},
"query": {
"match" : {
"text_entry" : "a*"
}
}
}'
body2 <- '{
"slice": {
"id": 1,
"max": 2
},
"query": {
"match" : {
"text_entry" : "a*"
}
}
}'
res1 <- Search(x, index = 'shakespeare', time_scroll="1m", body = body1)
res2 <- Search(x, index = 'shakespeare', time_scroll="1m", body = body2)
scroll(x, res1$`_scroll_id`)
scroll(x, res2$`_scroll_id`)
out1 <- list()
hits <- 1
while(hits != 0){
tmp1 <- scroll(x, res1$`_scroll_id`)
hits <- length(tmp1$hits$hits)
if(hits > 0)
out1 <- c(out1, tmp1$hits$hits)
}
out2 <- list()
hits <- 1
while(hits != 0) {
tmp2 <- scroll(x, res2$`_scroll_id`)
hits <- length(tmp2$hits$hits)
if(hits > 0)
out2 <- c(out2, tmp2$hits$hits)
}
c(
lapply(out1, "[[", "_source"),
lapply(out2, "[[", "_source")
)
# Using filters
## A bool filter
body <- '{
"query":{
"bool": {
"must_not" : {
"range" : {
"year" : { "from" : 2011, "to" : 2012 }
}
}
}
}
}'
Search(x, 'gbif', body = body)$hits$total$value
## Geo filters - fun!
### Note that filers have many geospatial filter options, but queries
### have fewer, andrequire a geo_shape mapping
body <- '{
"mappings": {
"properties": {
"location" : {"type" : "geo_point"}
}
}
}'
index_recreate(x, index='gbifgeopoint', body=body)
path <- system.file("examples", "gbif_geopoint.json",
package = "elastic")
path <- type_remover(path)
invisible(docs_bulk(x, path))
### Points within a bounding box
body <- '{
"query":{
"bool" : {
"must" : {
"match_all" : {}
},
"filter":{
"geo_bounding_box" : {
"location" : {
"top_left" : {
"lat" : 60,
"lon" : 1
},
"bottom_right" : {
"lat" : 40,
"lon" : 14
}
}
}
}
}
}
}'
out <- Search(x, 'gbifgeopoint', body = body, size = 300)
out$hits$total$value
do.call(rbind, lapply(out$hits$hits, function(x) x$`_source`$location))
### Points within distance of a point
body <- '{
"query": {
"bool" : {
"must" : {
"match_all" : {}
},
"filter" : {
"geo_distance" : {
"distance" : "200km",
"location" : {
"lon" : 4,
"lat" : 50
}
}
}
}}}'
out <- Search(x, 'gbifgeopoint', body = body)
out$hits$total$value
do.call(rbind, lapply(out$hits$hits, function(x) x$`_source`$location))
### Points within distance range of a point
body <- '{
"aggs":{
"points_within_dist" : {
"geo_distance" : {
"field": "location",
"origin" : "4, 50",
"ranges": [
{"from" : 200},
{"to" : 400}
]
}
}
}
}'
out <- Search(x, 'gbifgeopoint', body = body)
out$hits$total$value
do.call(rbind, lapply(out$hits$hits, function(x) x$`_source`$location))
### Points within a polygon
body <- '{
"query":{
"bool" : {
"must" : {
"match_all" : {}
},
"filter":{
"geo_polygon" : {
"location" : {
"points" : [
[80.0, -20.0], [-80.0, -20.0], [-80.0, 60.0], [40.0, 60.0], [80.0, -20.0]
]
}
}
}
}
}
}'
out <- Search(x, 'gbifgeopoint', body = body)
out$hits$total$value
do.call(rbind, lapply(out$hits$hits, function(x) x$`_source`$location))
### Geoshape filters using queries instead of filters
#### Get data with geojson type location data loaded first
body <- '{
"mappings": {
"properties": {
"location" : {"type" : "geo_shape"}
}
}
}'
index_recreate(x, index='geoshape', body=body)
path <- system.file("examples", "gbif_geoshape.json",
package = "elastic")
path <- type_remover(path)
invisible(docs_bulk(x, path))
#### Get data with a square envelope, w/ point defining upper left and the other
#### defining the lower right
body <- '{
"query":{
"geo_shape" : {
"location" : {
"shape" : {
"type": "envelope",
"coordinates": [[-30, 50],[30, 0]]
}
}
}
}
}'
out <- Search(x, 'geoshape', body = body)
out$hits$total$value
#### Get data with a circle, w/ point defining center, and radius
body <- '{
"query":{
"geo_shape" : {
"location" : {
"shape" : {
"type": "circle",
"coordinates": [-10, 45],
"radius": "2000km"
}
}
}
}
}'
out <- Search(x, 'geoshape', body = body)
out$hits$total$value
#### Use a polygon, w/ point defining center, and radius
body <- '{
"query":{
"geo_shape" : {
"location" : {
"shape" : {
"type": "polygon",
"coordinates": [
[ [80.0, -20.0], [-80.0, -20.0], [-80.0, 60.0], [40.0, 60.0], [80.0, -20.0] ]
]
}
}
}
}
}'
out <- Search(x, 'geoshape', body = body)
out$hits$total$value
# Geofilter with WKT
# format follows "BBOX (minlon, maxlon, maxlat, minlat)"
body <- '{
"query": {
"bool" : {
"must" : {
"match_all" : {}
},
"filter" : {
"geo_bounding_box" : {
"location" : {
"wkt" : "BBOX (1, 14, 60, 40)"
}
}
}
}
}
}'
out <- Search(x, 'gbifgeopoint', body = body)
out$hits$total$value
# Missing filter
if (gsub("\\.", "", x$ping()$version$number) < 500) {
### ES < v5
body <- '{
"query":{
"constant_score" : {
"filter" : {
"missing" : { "field" : "play_name" }
}
}
}
}'
Search(x, "shakespeare", body = body)
} else {
### ES => v5
body <- '{
"query":{
"bool" : {
"must_not" : {
"exists" : {
"field" : "play_name"
}
}
}
}
}'
Search(x, "shakespeare", body = body)
}
# prefix filter
body <- '{
"query": {
"bool": {
"must": {
"prefix" : {
"speaker" : "we"
}
}
}
}
}'
z <- Search(x, "shakespeare", body = body)
z$hits$total$value
vapply(z$hits$hits, "[[", "", c("_source", "speaker"))
# ids filter
if (gsub("\\.", "", x$ping()$version$number) < 500) {
### ES < v5
body <- '{
"query":{
"bool": {
"must": {
"ids" : {
"values": ["1","2","10","2000"]
}
}
}
}
}'
z <- Search(x, "shakespeare", body = body)
z$hits$total$value
identical(
c("1","2","10","2000"),
vapply(z$hits$hits, "[[", "", "_id")
)
} else {
body <- '{
"query":{
"ids" : {
"values": ["1","2","10","2000"]
}
}
}'
z <- Search(x, "shakespeare", body = body)
z$hits$total$value
identical(
c("1","2","10","2000"),
vapply(z$hits$hits, "[[", "", "_id")
)
}
# combined prefix and ids filters
if (gsub("\\.", "", x$ping()$version$number) < 500) {
### ES < v5
body <- '{
"query":{
"bool" : {
"should" : {
"or": [{
"ids" : {
"values": ["1","2","3","10","2000"]
}
}, {
"prefix" : {
"speaker" : "we"
}
}
]
}
}
}
}'
z <- Search(x, "shakespeare", body = body)
z$hits$total$value
} else {
### ES => v5
body <- '{
"query":{
"bool" : {
"should" : [
{
"ids" : {
"values": ["1","2","3","10","2000"]
}
},
{
"prefix" : {
"speaker" : "we"
}
}
]
}
}
}'
z <- Search(x, "shakespeare", body = body)
z$hits$total$value
}
# Suggestions
sugg <- '{
"query" : {
"match" : {
"text_entry" : "late"
}
},
"suggest" : {
"sugg" : {
"text" : "late",
"term" : {
"field" : "text_entry"
}
}
}
}'
Search(x, index = "shakespeare", body = sugg,
asdf = TRUE, size = 0)$suggest$sugg$options
# stream data out using jsonlite::stream_out
file <- tempfile()
res <- Search(x, "shakespeare", size = 1000, stream_opts = list(file = file))
head(df <- jsonlite::stream_in(file(file)))
NROW(df)
unlink(file)
# get profile data
body <- '{
"profile": true,
"query" : {
"match" : { "text_entry" : "war" }
}
}'
res <- Search(x, "shakespeare", body = body)
res$profile
# time in nanoseconds across each of the shards
vapply(res$profile$shards, function(w) {
w$searches[[1]]$query[[1]]$time_in_nanos
}, 1)
} # }