Use the bulk API to prepare bulk format data
Usage
docs_bulk_prep(
x,
index,
path,
type = NULL,
chunk_size = 1000,
doc_ids = NULL,
quiet = FALSE,
digits = NA,
sf = NULL
)
Arguments
- x
A data.frame or a list. required.
- index
(character) The index name. required.
- path
(character) Path to the file. If data is broken into chunks, we'll use this path as the prefix, and suffix each file path with a number. required.
- type
(character) The type. default:
NULL
. Note thattype
is deprecated in Elasticsearch v7 and greater, and removed in Elasticsearch v8- chunk_size
(integer) Size of each chunk. If your data.frame is smaller thank
chunk_size
, this parameter is essentially ignored. We write in chunks because at some point, depending on size of each document, and Elasticsearch setup, writing a very large number of documents in one go becomes slow, so chunking can help. This parameter is ignored if you pass a file name. Default: 1000- doc_ids
An optional vector (character or numeric/integer) of document ids to use. This vector has to equal the size of the documents you are passing in, and will error if not. If you pass a factor we convert to character. Default: not passed
- quiet
(logical) Suppress progress bar. Default:
FALSE
- digits
digits used by the parameter of the same name by
jsonlite::toJSON()
to convert data to JSON before being submitted to your ES instance. default:NA
- sf
used by
jsonlite::toJSON()
to convert sf objects. Set to "features" for conversion to GeoJSON. default: "dataframe"
Tempfiles
In docs_bulk
we create temporary files in some cases, and delete
those before the function exits. However, we don't clean up those files
in this function because the point of the function is to create the
newline delimited JSON files that you need. Tempfiles are cleaned up
when you R session ends though - be aware of that. If you want to
keep the files make sure to move them outside of the temp directory.
See also
Other bulk-functions:
docs_bulk_create()
,
docs_bulk_delete()
,
docs_bulk_index()
,
docs_bulk_update()
,
docs_bulk()
Examples
if (FALSE) { # \dontrun{
# From a data.frame
ff <- tempfile(fileext = ".json")
docs_bulk_prep(mtcars, index = "hello", path = ff)
readLines(ff)
## field names cannot contain dots
names(iris) <- gsub("\\.", "_", names(iris))
docs_bulk_prep(iris, "iris", path = tempfile(fileext = ".json"))
## type can be missing, but index can not
docs_bulk_prep(iris, "flowers", path = tempfile(fileext = ".json"))
# From a list
docs_bulk_prep(apply(iris, 1, as.list), index="iris",
path = tempfile(fileext = ".json"))
docs_bulk_prep(apply(USArrests, 1, as.list), index="arrests",
path = tempfile(fileext = ".json"))
# when chunking
## multiple files created, one for each chunk
bigiris <- do.call("rbind", replicate(30, iris, FALSE))
docs_bulk_prep(bigiris, index = "big", path = tempfile(fileext = ".json"))
# When using in a loop
## We internally get last _id counter to know where to start on next bulk
## insert but you need to sleep in between docs_bulk_prep calls, longer the
## bigger the data is
files <- c(system.file("examples", "test1.csv", package = "elastic"),
system.file("examples", "test2.csv", package = "elastic"),
system.file("examples", "test3.csv", package = "elastic"))
paths <- vector("list", length = length(files))
for (i in seq_along(files)) {
d <- read.csv(files[[i]])
paths[i] <- docs_bulk_prep(d, index = "stuff",
path = tempfile(fileext = ".json"))
}
unlist(paths)
# You can include your own document id numbers
## Either pass in as an argument
files <- c(system.file("examples", "test1.csv", package = "elastic"),
system.file("examples", "test2.csv", package = "elastic"),
system.file("examples", "test3.csv", package = "elastic"))
tt <- vapply(files, function(z) NROW(read.csv(z)), numeric(1))
ids <- list(1:tt[1],
(tt[1] + 1):(tt[1] + tt[2]),
(tt[1] + tt[2] + 1):sum(tt))
paths <- vector("list", length = length(files))
for (i in seq_along(files)) {
d <- read.csv(files[[i]])
paths[i] <- docs_bulk_prep(d, index = "testes",
doc_ids = ids[[i]], path = tempfile(fileext = ".json"))
}
unlist(paths)
## or include in the input data
### from data.frame's
files <- c(system.file("examples", "test1_id.csv", package = "elastic"),
system.file("examples", "test2_id.csv", package = "elastic"),
system.file("examples", "test3_id.csv", package = "elastic"))
paths <- vector("list", length = length(files))
for (i in seq_along(files)) {
d <- read.csv(files[[i]])
paths[i] <- docs_bulk_prep(d, index = "testes",
path = tempfile(fileext = ".json"))
}
unlist(paths)
### from lists via file inputs
paths <- vector("list", length = length(files))
for (i in seq_along(files)) {
d <- read.csv(files[[i]])
d <- apply(d, 1, as.list)
paths[i] <- docs_bulk_prep(d, index = "testes",
path = tempfile(fileext = ".json"))
}
unlist(paths)
# A mix of actions
## make sure you use a column named 'es_action' or this won't work
## if you need to delete or update you need document IDs
if (index_exists(x, "baz")) index_delete(x, "baz")
df <- data.frame(a = 1:5, b = 6:10, c = letters[1:5], stringsAsFactors = FALSE)
f <- tempfile(fileext = ".json")
invisible(docs_bulk_prep(df, "baz", f))
cat(readLines(f), sep = "\n")
docs_bulk(x, f)
Sys.sleep(2)
(res <- Search(x, 'baz', asdf=TRUE)$hits$hits)
df[1, "a"] <- 99
df[1, "c"] <- "aa"
df[3, "c"] <- 33
df[3, "c"] <- "cc"
df$es_action <- c('update', 'delete', 'update', 'delete', 'delete')
df$id <- res$`_id`
df
f <- tempfile(fileext = ".json")
invisible(docs_bulk_prep(df, "baz", path = f, doc_ids = df$id))
cat(readLines(f), sep = "\n")
docs_bulk(x, f)
# suppress progress bar
docs_bulk_prep(mtcars, index = "hello",
path = tempfile(fileext = ".json"), quiet = TRUE)
## vs.
docs_bulk_prep(mtcars, index = "hello",
path = tempfile(fileext = ".json"), quiet = FALSE)
} # }