Skip to contents

All the tests were done on an Arch Linux x86_64 machine with an Intel(R) Core(TM) i7 CPU (1.90GHz).

Empirical likelihood computation

We show the performance of computing empirical likelihood with el_mean(). We test the computation speed with simulated data sets in two different settings: 1) the number of observations increases with the number of parameters fixed, and 2) the number of parameters increases with the number of observations fixed.

Increasing the number of observations

We fix the number of parameters at p=10p = 10, and simulate the parameter value and n×pn \times p matrices using rnorm(). In order to ensure convergence with a large nn, we set a large threshold value using el_control().

library(ggplot2)
library(microbenchmark)
set.seed(3175775)
p <- 10
par <- rnorm(p, sd = 0.1)
ctrl <- el_control(th = 1e+10)
result <- microbenchmark(
  n1e2 = el_mean(matrix(rnorm(100 * p), ncol = p), par = par, control = ctrl),
  n1e3 = el_mean(matrix(rnorm(1000 * p), ncol = p), par = par, control = ctrl),
  n1e4 = el_mean(matrix(rnorm(10000 * p), ncol = p), par = par, control = ctrl),
  n1e5 = el_mean(matrix(rnorm(100000 * p), ncol = p), par = par, control = ctrl)
)

Below are the results:

result
#> Unit: microseconds
#>  expr        min         lq        mean     median         uq        max neval
#>  n1e2    443.578    477.922    519.6528    498.661    543.725    918.845   100
#>  n1e3   1182.527   1397.343   1524.3120   1491.945   1605.812   2429.375   100
#>  n1e4  10829.404  12321.514  14500.9847  14796.859  15988.403  19451.367   100
#>  n1e5 169782.577 201549.111 235977.6661 228827.393 252872.935 374418.330   100
#>  cld
#>  a  
#>  a  
#>   b 
#>    c
autoplot(result)
#> Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
#>  Please use tidy evaluation idioms with `aes()`.
#>  See also `vignette("ggplot2-in-packages")` for more information.
#>  The deprecated feature was likely used in the microbenchmark package.
#>   Please report the issue at
#>   <https://github.com/joshuaulrich/microbenchmark/issues/>.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.

Increasing the number of parameters

This time we fix the number of observations at n=1000n = 1000, and evaluate empirical likelihood at zero vectors of different sizes.

n <- 1000
result2 <- microbenchmark(
  p5 = el_mean(matrix(rnorm(n * 5), ncol = 5),
    par = rep(0, 5),
    control = ctrl
  ),
  p25 = el_mean(matrix(rnorm(n * 25), ncol = 25),
    par = rep(0, 25),
    control = ctrl
  ),
  p100 = el_mean(matrix(rnorm(n * 100), ncol = 100),
    par = rep(0, 100),
    control = ctrl
  ),
  p400 = el_mean(matrix(rnorm(n * 400), ncol = 400),
    par = rep(0, 400),
    control = ctrl
  )
)
result2
#> Unit: microseconds
#>  expr        min         lq        mean      median          uq        max
#>    p5    709.995    775.462    861.4075    802.1225    879.7275   4393.581
#>   p25   2898.661   2954.229   3124.9776   3004.4325   3082.2180   6324.706
#>  p100  23333.994  25898.571  28360.2001  27360.6300  30944.7400  46769.237
#>  p400 270023.702 295194.570 330111.8732 315992.4105 352769.2960 484696.790
#>  neval cld
#>    100 a  
#>    100 a  
#>    100  b 
#>    100   c
autoplot(result2)

On average, evaluating empirical likelihood with a 100000×10 or 1000×400 matrix at a parameter value satisfying the convex hull constraint takes less than a second.