Skip to contents

All the tests were done on an Arch Linux x86_64 machine with an Intel(R) Core(TM) i7 CPU (1.90GHz).

Empirical likelihood computation

We show the performance of computing empirical likelihood with el_mean(). We test the computation speed with simulated data sets in two different settings: 1) the number of observations increases with the number of parameters fixed, and 2) the number of parameters increases with the number of observations fixed.

Increasing the number of observations

We fix the number of parameters at p=10p = 10, and simulate the parameter value and n×pn \times p matrices using rnorm(). In order to ensure convergence with a large nn, we set a large threshold value using el_control().

library(ggplot2)
library(microbenchmark)
set.seed(3175775)
p <- 10
par <- rnorm(p, sd = 0.1)
ctrl <- el_control(th = 1e+10)
result <- microbenchmark(
  n1e2 = el_mean(matrix(rnorm(100 * p), ncol = p), par = par, control = ctrl),
  n1e3 = el_mean(matrix(rnorm(1000 * p), ncol = p), par = par, control = ctrl),
  n1e4 = el_mean(matrix(rnorm(10000 * p), ncol = p), par = par, control = ctrl),
  n1e5 = el_mean(matrix(rnorm(100000 * p), ncol = p), par = par, control = ctrl)
)

Below are the results:

result
#> Unit: microseconds
#>  expr        min          lq        mean     median          uq        max
#>  n1e2    429.511    464.0795    493.6927    480.675    507.9415    620.325
#>  n1e3   1130.506   1340.7825   1443.9696   1413.803   1535.0800   2291.118
#>  n1e4  10379.826  12634.8875  15577.4431  14672.002  15555.0380  85805.068
#>  n1e5 160536.536 201405.9760 236683.7819 235374.562 274470.7995 322274.589
#>  neval cld
#>    100 a  
#>    100 a  
#>    100  b 
#>    100   c
autoplot(result)

Increasing the number of parameters

This time we fix the number of observations at n=1000n = 1000, and evaluate empirical likelihood at zero vectors of different sizes.

n <- 1000
result2 <- microbenchmark(
  p5 = el_mean(matrix(rnorm(n * 5), ncol = 5),
    par = rep(0, 5),
    control = ctrl
  ),
  p25 = el_mean(matrix(rnorm(n * 25), ncol = 25),
    par = rep(0, 25),
    control = ctrl
  ),
  p100 = el_mean(matrix(rnorm(n * 100), ncol = 100),
    par = rep(0, 100),
    control = ctrl
  ),
  p400 = el_mean(matrix(rnorm(n * 400), ncol = 400),
    par = rep(0, 400),
    control = ctrl
  )
)
result2
#> Unit: microseconds
#>  expr        min          lq        mean      median        uq        max neval
#>    p5    696.849    737.9245    820.9745    762.4255    781.05   3683.382   100
#>   p25   2713.555   2765.2015   2950.3288   2793.8500   2842.44   5801.608   100
#>  p100  21087.554  23607.1080  25812.4630  24086.3610  28580.33  46488.955   100
#>  p400 236349.809 260017.6655 294741.6930 282436.8500 310713.81 465667.908   100
#>  cld
#>  a  
#>  a  
#>   b 
#>    c
autoplot(result2)

On average, evaluating empirical likelihood with a 100000×10 or 1000×400 matrix at a parameter value satisfying the convex hull constraint takes less than a second.