All the tests were done on an Arch Linux x86_64 machine with an Intel(R) Core(TM) i7 CPU (1.90GHz).
Empirical likelihood computation
We show the performance of computing empirical likelihood with
el_mean()
. We test the computation speed with simulated
data sets in two different settings: 1) the number of observations
increases with the number of parameters fixed, and 2) the number of
parameters increases with the number of observations fixed.
Increasing the number of observations
We fix the number of parameters at
,
and simulate the parameter value and
matrices using rnorm()
. In order to ensure convergence with
a large
,
we set a large threshold value using el_control()
.
library(ggplot2)
library(microbenchmark)
set.seed(3175775)
p <- 10
par <- rnorm(p, sd = 0.1)
ctrl <- el_control(th = 1e+10)
result <- microbenchmark(
n1e2 = el_mean(matrix(rnorm(100 * p), ncol = p), par = par, control = ctrl),
n1e3 = el_mean(matrix(rnorm(1000 * p), ncol = p), par = par, control = ctrl),
n1e4 = el_mean(matrix(rnorm(10000 * p), ncol = p), par = par, control = ctrl),
n1e5 = el_mean(matrix(rnorm(100000 * p), ncol = p), par = par, control = ctrl)
)
Below are the results:
result
#> Unit: microseconds
#> expr min lq mean median uq max
#> n1e2 431.395 469.2555 504.4113 488.055 542.7975 668.017
#> n1e3 1140.227 1350.5890 1459.7935 1425.318 1541.1745 2284.662
#> n1e4 10472.233 12808.1105 15817.5770 14815.454 15702.6790 90502.589
#> n1e5 158213.415 205709.0565 241115.2185 240662.913 277792.0530 339345.141
#> neval cld
#> 100 a
#> 100 a
#> 100 b
#> 100 c
autoplot(result)
Increasing the number of parameters
This time we fix the number of observations at , and evaluate empirical likelihood at zero vectors of different sizes.
n <- 1000
result2 <- microbenchmark(
p5 = el_mean(matrix(rnorm(n * 5), ncol = 5),
par = rep(0, 5),
control = ctrl
),
p25 = el_mean(matrix(rnorm(n * 25), ncol = 25),
par = rep(0, 25),
control = ctrl
),
p100 = el_mean(matrix(rnorm(n * 100), ncol = 100),
par = rep(0, 100),
control = ctrl
),
p400 = el_mean(matrix(rnorm(n * 400), ncol = 400),
par = rep(0, 400),
control = ctrl
)
)
result2
#> Unit: microseconds
#> expr min lq mean median uq max
#> p5 706.498 747.5295 877.7997 778.357 825.2345 3876.651
#> p25 2673.407 2780.3510 2974.6349 2827.033 2881.4445 6080.111
#> p100 21291.333 23724.5320 26122.3424 24711.022 28959.4760 47624.822
#> p400 236755.986 264297.5485 298386.0130 286411.401 313203.0335 477978.723
#> neval cld
#> 100 a
#> 100 a
#> 100 b
#> 100 c
autoplot(result2)
On average, evaluating empirical likelihood with a 100000×10 or 1000×400 matrix at a parameter value satisfying the convex hull constraint takes less than a second.