All the tests were done on an Arch Linux x86_64 machine with an Intel(R) Core(TM) i7 CPU (1.90GHz).
Empirical likelihood computation
We show the performance of computing empirical likelihood with
el_mean()
. We test the computation speed with simulated
data sets in two different settings: 1) the number of observations
increases with the number of parameters fixed, and 2) the number of
parameters increases with the number of observations fixed.
Increasing the number of observations
We fix the number of parameters at
,
and simulate the parameter value and
matrices using rnorm()
. In order to ensure convergence with
a large
,
we set a large threshold value using el_control()
.
library(ggplot2)
library(microbenchmark)
set.seed(3175775)
p <- 10
par <- rnorm(p, sd = 0.1)
ctrl <- el_control(th = 1e+10)
result <- microbenchmark(
n1e2 = el_mean(matrix(rnorm(100 * p), ncol = p), par = par, control = ctrl),
n1e3 = el_mean(matrix(rnorm(1000 * p), ncol = p), par = par, control = ctrl),
n1e4 = el_mean(matrix(rnorm(10000 * p), ncol = p), par = par, control = ctrl),
n1e5 = el_mean(matrix(rnorm(100000 * p), ncol = p), par = par, control = ctrl)
)
Below are the results:
result
#> Unit: microseconds
#> expr min lq mean median uq max neval
#> n1e2 437.406 476.2775 586.9647 495.799 553.131 5280.724 100
#> n1e3 1174.870 1398.5070 2337.5614 1488.365 1645.697 71417.517 100
#> n1e4 10671.322 13061.4930 14545.1050 14970.731 15773.828 21142.201 100
#> n1e5 168103.418 204650.5240 236256.0643 226905.168 261474.538 333851.274 100
#> cld
#> a
#> a
#> b
#> c
autoplot(result)
Increasing the number of parameters
This time we fix the number of observations at , and evaluate empirical likelihood at zero vectors of different sizes.
n <- 1000
result2 <- microbenchmark(
p5 = el_mean(matrix(rnorm(n * 5), ncol = 5),
par = rep(0, 5),
control = ctrl
),
p25 = el_mean(matrix(rnorm(n * 25), ncol = 25),
par = rep(0, 25),
control = ctrl
),
p100 = el_mean(matrix(rnorm(n * 100), ncol = 100),
par = rep(0, 100),
control = ctrl
),
p400 = el_mean(matrix(rnorm(n * 400), ncol = 400),
par = rep(0, 400),
control = ctrl
)
)
result2
#> Unit: microseconds
#> expr min lq mean median uq max neval
#> p5 714.752 767.6915 804.5887 798.433 836.885 944.330 100
#> p25 2900.096 2941.7185 3128.5123 3000.734 3043.704 8278.422 100
#> p100 23254.398 25821.4230 28125.4062 26733.429 30922.938 50002.319 100
#> p400 266463.668 292106.9235 325892.9611 312605.600 341818.385 567187.310 100
#> cld
#> a
#> a
#> b
#> c
autoplot(result2)
On average, evaluating empirical likelihood with a 100000×10 or 1000×400 matrix at a parameter value satisfying the convex hull constraint takes less than a second.