Skip to contents

All the tests were done on an Arch Linux x86_64 machine with an Intel(R) Core(TM) i7 CPU (1.90GHz).

Empirical likelihood computation

We show the performance of computing empirical likelihood with el_mean(). We test the computation speed with simulated data sets in two different settings: 1) the number of observations increases with the number of parameters fixed, and 2) the number of parameters increases with the number of observations fixed.

Increasing the number of observations

We fix the number of parameters at p=10p = 10, and simulate the parameter value and n×pn \times p matrices using rnorm(). In order to ensure convergence with a large nn, we set a large threshold value using el_control().

library(ggplot2)
library(microbenchmark)
set.seed(3175775)
p <- 10
par <- rnorm(p, sd = 0.1)
ctrl <- el_control(th = 1e+10)
result <- microbenchmark(
  n1e2 = el_mean(matrix(rnorm(100 * p), ncol = p), par = par, control = ctrl),
  n1e3 = el_mean(matrix(rnorm(1000 * p), ncol = p), par = par, control = ctrl),
  n1e4 = el_mean(matrix(rnorm(10000 * p), ncol = p), par = par, control = ctrl),
  n1e5 = el_mean(matrix(rnorm(100000 * p), ncol = p), par = par, control = ctrl)
)

Below are the results:

result
#> Unit: microseconds
#>  expr        min          lq        mean      median          uq        max
#>  n1e2    439.329    472.9515    517.3233    496.6615    545.3065    972.843
#>  n1e3   1176.924   1403.8625   1507.7757   1486.5510   1577.3800   2364.117
#>  n1e4  10742.975  12280.8975  14450.0295  14924.4450  15860.2500  20029.156
#>  n1e5 170513.881 203906.1415 237029.4209 232360.2015 253507.3665 373442.405
#>  neval cld
#>    100 a  
#>    100 a  
#>    100  b 
#>    100   c
autoplot(result)
#> Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
#>  Please use tidy evaluation idioms with `aes()`.
#>  See also `vignette("ggplot2-in-packages")` for more information.
#>  The deprecated feature was likely used in the microbenchmark package.
#>   Please report the issue at
#>   <https://github.com/joshuaulrich/microbenchmark/issues/>.
#> This warning is displayed once per session.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.

Increasing the number of parameters

This time we fix the number of observations at n=1000n = 1000, and evaluate empirical likelihood at zero vectors of different sizes.

n <- 1000
result2 <- microbenchmark(
  p5 = el_mean(matrix(rnorm(n * 5), ncol = 5),
    par = rep(0, 5),
    control = ctrl
  ),
  p25 = el_mean(matrix(rnorm(n * 25), ncol = 25),
    par = rep(0, 25),
    control = ctrl
  ),
  p100 = el_mean(matrix(rnorm(n * 100), ncol = 100),
    par = rep(0, 100),
    control = ctrl
  ),
  p400 = el_mean(matrix(rnorm(n * 400), ncol = 400),
    par = rep(0, 400),
    control = ctrl
  )
)
result2
#> Unit: microseconds
#>  expr        min          lq       mean      median          uq        max
#>    p5    725.232    757.7525    790.034    786.6715    806.5435    912.391
#>   p25   2892.833   2929.0450   3068.932   2953.3505   2993.5955   6483.275
#>  p100  23211.899  25770.4180  27748.698  25961.9000  30779.8815  46652.183
#>  p400 265685.498 289184.3315 323979.523 311322.0575 341590.7660 532696.005
#>  neval cld
#>    100 a  
#>    100 a  
#>    100  b 
#>    100   c
autoplot(result2)

On average, evaluating empirical likelihood with a 100000×10 or 1000×400 matrix at a parameter value satisfying the convex hull constraint takes less than a second.