All the tests were done on an Arch Linux x86_64 machine with an Intel(R) Core(TM) i7 CPU (1.90GHz).
Empirical likelihood computation
We show the performance of computing empirical likelihood with
el_mean(). We test the computation speed with simulated
data sets in two different settings: 1) the number of observations
increases with the number of parameters fixed, and 2) the number of
parameters increases with the number of observations fixed.
Increasing the number of observations
We fix the number of parameters at
,
and simulate the parameter value and
matrices using rnorm(). In order to ensure convergence with
a large
,
we set a large threshold value using el_control().
library(ggplot2)
library(microbenchmark)
set.seed(3175775)
p <- 10
par <- rnorm(p, sd = 0.1)
ctrl <- el_control(th = 1e+10)
result <- microbenchmark(
n1e2 = el_mean(matrix(rnorm(100 * p), ncol = p), par = par, control = ctrl),
n1e3 = el_mean(matrix(rnorm(1000 * p), ncol = p), par = par, control = ctrl),
n1e4 = el_mean(matrix(rnorm(10000 * p), ncol = p), par = par, control = ctrl),
n1e5 = el_mean(matrix(rnorm(100000 * p), ncol = p), par = par, control = ctrl)
)Below are the results:
result
#> Unit: microseconds
#> expr min lq mean median uq max
#> n1e2 439.329 472.9515 517.3233 496.6615 545.3065 972.843
#> n1e3 1176.924 1403.8625 1507.7757 1486.5510 1577.3800 2364.117
#> n1e4 10742.975 12280.8975 14450.0295 14924.4450 15860.2500 20029.156
#> n1e5 170513.881 203906.1415 237029.4209 232360.2015 253507.3665 373442.405
#> neval cld
#> 100 a
#> 100 a
#> 100 b
#> 100 c
autoplot(result)
#> Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
#> ℹ Please use tidy evaluation idioms with `aes()`.
#> ℹ See also `vignette("ggplot2-in-packages")` for more information.
#> ℹ The deprecated feature was likely used in the microbenchmark package.
#> Please report the issue at
#> <https://github.com/joshuaulrich/microbenchmark/issues/>.
#> This warning is displayed once per session.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.
Increasing the number of parameters
This time we fix the number of observations at , and evaluate empirical likelihood at zero vectors of different sizes.
n <- 1000
result2 <- microbenchmark(
p5 = el_mean(matrix(rnorm(n * 5), ncol = 5),
par = rep(0, 5),
control = ctrl
),
p25 = el_mean(matrix(rnorm(n * 25), ncol = 25),
par = rep(0, 25),
control = ctrl
),
p100 = el_mean(matrix(rnorm(n * 100), ncol = 100),
par = rep(0, 100),
control = ctrl
),
p400 = el_mean(matrix(rnorm(n * 400), ncol = 400),
par = rep(0, 400),
control = ctrl
)
)
result2
#> Unit: microseconds
#> expr min lq mean median uq max
#> p5 725.232 757.7525 790.034 786.6715 806.5435 912.391
#> p25 2892.833 2929.0450 3068.932 2953.3505 2993.5955 6483.275
#> p100 23211.899 25770.4180 27748.698 25961.9000 30779.8815 46652.183
#> p400 265685.498 289184.3315 323979.523 311322.0575 341590.7660 532696.005
#> neval cld
#> 100 a
#> 100 a
#> 100 b
#> 100 c
autoplot(result2)
On average, evaluating empirical likelihood with a 100000×10 or 1000×400 matrix at a parameter value satisfying the convex hull constraint takes less than a second.
