Skip to contents

All the tests were done on an Arch Linux x86_64 machine with an Intel(R) Core(TM) i7 CPU (1.90GHz).

Empirical likelihood computation

We show the performance of computing empirical likelihood with el_mean(). We test the computation speed with simulated data sets in two different settings: 1) the number of observations increases with the number of parameters fixed, and 2) the number of parameters increases with the number of observations fixed.

Increasing the number of observations

We fix the number of parameters at p=10p = 10, and simulate the parameter value and n×pn \times p matrices using rnorm(). In order to ensure convergence with a large nn, we set a large threshold value using el_control().

library(ggplot2)
library(microbenchmark)
set.seed(3175775)
p <- 10
par <- rnorm(p, sd = 0.1)
ctrl <- el_control(th = 1e+10)
result <- microbenchmark(
  n1e2 = el_mean(matrix(rnorm(100 * p), ncol = p), par = par, control = ctrl),
  n1e3 = el_mean(matrix(rnorm(1000 * p), ncol = p), par = par, control = ctrl),
  n1e4 = el_mean(matrix(rnorm(10000 * p), ncol = p), par = par, control = ctrl),
  n1e5 = el_mean(matrix(rnorm(100000 * p), ncol = p), par = par, control = ctrl)
)

Below are the results:

result
#> Unit: microseconds
#>  expr        min         lq        mean      median          uq        max
#>  n1e2    448.296    484.624    516.6993    501.1445    548.5885    627.561
#>  n1e3   1209.426   1411.318   1516.4578   1499.2110   1587.1655   2624.425
#>  n1e4  10716.849  12327.078  14431.6034  14722.1305  15837.9365  19154.016
#>  n1e5 168660.552 201714.250 235261.4350 228490.0490 254308.6870 369763.718
#>  neval cld
#>    100 a  
#>    100 a  
#>    100  b 
#>    100   c
autoplot(result)
#> Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
#>  Please use tidy evaluation idioms with `aes()`.
#>  See also `vignette("ggplot2-in-packages")` for more information.
#>  The deprecated feature was likely used in the microbenchmark package.
#>   Please report the issue at
#>   <https://github.com/joshuaulrich/microbenchmark/issues/>.
#> This warning is displayed once per session.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.

Increasing the number of parameters

This time we fix the number of observations at n=1000n = 1000, and evaluate empirical likelihood at zero vectors of different sizes.

n <- 1000
result2 <- microbenchmark(
  p5 = el_mean(matrix(rnorm(n * 5), ncol = 5),
    par = rep(0, 5),
    control = ctrl
  ),
  p25 = el_mean(matrix(rnorm(n * 25), ncol = 25),
    par = rep(0, 25),
    control = ctrl
  ),
  p100 = el_mean(matrix(rnorm(n * 100), ncol = 100),
    par = rep(0, 100),
    control = ctrl
  ),
  p400 = el_mean(matrix(rnorm(n * 400), ncol = 400),
    par = rep(0, 400),
    control = ctrl
  )
)
result2
#> Unit: microseconds
#>  expr        min          lq        mean      median         uq        max
#>    p5    731.875    769.1595    809.7365    796.8165    851.188    976.001
#>   p25   2902.244   2947.1970   3113.3180   2988.7500   3050.320   6387.264
#>  p100  23382.834  25894.5890  28029.9008  26269.4285  30851.962  46900.681
#>  p400 266563.765 292522.5595 328469.3686 313541.0595 350069.032 545359.636
#>  neval cld
#>    100 a  
#>    100 a  
#>    100  b 
#>    100   c
autoplot(result2)

On average, evaluating empirical likelihood with a 100000×10 or 1000×400 matrix at a parameter value satisfying the convex hull constraint takes less than a second.