Computes empirical likelihood for the mean.
Usage
el_mean(x, par, weights = NULL, control = el_control())Arguments
- x
A numeric matrix, or an object that can be coerced to a numeric matrix. Each row corresponds to an observation. The number of rows must be greater than the number of columns.
- par
A numeric vector of parameter values to be tested. The length of the vector must be the same as the number of columns in
x.- weights
An optional numeric vector of weights to be used in the fitting process. The length of the vector must be the same as the number of rows in
x. Defaults toNULL, corresponding to identical weights. If non-NULL, weighted empirical likelihood is computed.- control
An object of class ControlEL constructed by
el_control().
Value
An object of class EL.
Details
Let \(X_i\) be independent and identically distributed
\(p\)-dimensional random variable from an unknown distribution \(P\)
for \(i = 1, \dots, n\). We assume that \({\textrm{E}[X_i]} =
{\theta_0} \in {\rm{I\!R}}^p\) and that \(P\) has a positive definite
covariance matrix. Given a value of \(\theta\), the (profile) empirical
likelihood ratio is defined by
$$R(\theta) =
\max_{p_i}\left\{\prod_{i = 1}^n np_i :
\sum_{i = 1}^n p_i X_i = \theta,\
p_i \geq 0,\
\sum_{i = 1}^n p_i = 1
\right\}.$$
el_mean() computes the empirical log-likelihood ratio statistic
\(-2\log R(\theta)\), along with other values in EL.
References
Owen A (1990). “Empirical Likelihood Ratio Confidence Regions.” The Annals of Statistics, 18(1), 90–120. doi:10.1214/aos/1176347494 .
Examples
## Scalar mean
data("precip")
fit <- el_mean(precip, 30)
fit
#>
#> Empirical Likelihood
#>
#> Model: mean
#>
#> Maximum EL estimates:
#> [1] 34.89
#>
#> Chisq: 8.285, df: 1, Pr(>Chisq): 0.003998
#> EL evaluation: converged
#>
summary(fit)
#>
#> Empirical Likelihood
#>
#> Model: mean
#>
#> Number of observations: 70
#> Number of parameters: 1
#>
#> Parameter values under the null hypothesis:
#> [1] 30
#>
#> Lagrange multipliers:
#> [1] 0.02319
#>
#> Maximum EL estimates:
#> [1] 34.89
#>
#> logL: -301.5, logLR: -4.142
#> Chisq: 8.285, df: 1, Pr(>Chisq): 0.003998
#> EL evaluation: converged
#>
## Vector mean
data("faithful")
fit2 <- el_mean(faithful, par = c(3.5, 70))
summary(fit2)
#>
#> Empirical Likelihood
#>
#> Model: mean
#>
#> Number of observations: 272
#> Number of parameters: 2
#>
#> Parameter values under the null hypothesis:
#> eruptions waiting
#> 3.5 70.0
#>
#> Lagrange multipliers:
#> [1] -0.33537 0.03043
#>
#> Maximum EL estimates:
#> eruptions waiting
#> 3.488 70.897
#>
#> logL: -1529, logLR: -4.241
#> Chisq: 8.483, df: 2, Pr(>Chisq): 0.01439
#> EL evaluation: converged
#>
## Weighted data
w <- rep(c(1, 2), each = nrow(faithful) / 2)
fit3 <- el_mean(faithful, par = c(3.5, 70), weights = w)
summary(fit3)
#>
#> Weighted Empirical Likelihood
#>
#> Model: mean
#>
#> Number of observations: 272
#> Number of parameters: 2
#>
#> Parameter values under the null hypothesis:
#> eruptions waiting
#> 3.5 70.0
#>
#> Lagrange multipliers:
#> [1] -0.30891 0.02829
#>
#> Maximum EL estimates:
#> eruptions waiting
#> 3.498 70.931
#>
#> logL: -1513, logLR: -3.641
#> Chisq: 7.282, df: 2, Pr(>Chisq): 0.02622
#> EL evaluation: converged
#>
