Skip to contents

Provides summary methods for objects.

Usage

# S4 method for class 'EL'
summary(object, ...)

# S4 method for class 'ELMT'
summary(object, ...)

# S4 method for class 'ELT'
summary(object, ...)

# S4 method for class 'GLM'
summary(object, ...)

# S4 method for class 'LM'
summary(object, ...)

# S4 method for class 'QGLM'
summary(object, ...)

Arguments

object

An object for which a summary is desired.

...

Further arguments passed to methods.

Value

The form of the value returned by summary() depends on the class of its argument.

Methods (by class)

  • summary(EL): Summarizes the test results of the specified parameters.

  • summary(ELMT): Summarizes the multiple testing results.

  • summary(ELT): Summarizes the hypothesis test results.

  • summary(GLM): Summarizes the results of the overall model test and the significance tests for coefficients. The dispersion parameter is extracted for display.

  • summary(LM): Summarizes the results of the overall model test and the significance tests for coefficients.

  • summary(QGLM): Summarizes the results of the overall model test and the significance tests for coefficients. The estimated dispersion parameter is extracted for display.

See also

Examples

data("faithful")
fit <- el_mean(faithful, par = c(3.5, 70))
summary(fit)
#> 
#> 	Empirical Likelihood
#> 
#> Model: mean 
#> 
#> Number of observations: 272 
#> Number of parameters: 2 
#> 
#> Parameter values under the null hypothesis:
#> eruptions   waiting 
#>       3.5      70.0 
#> 
#> Lagrange multipliers:
#> [1] -0.33537  0.03043
#> 
#> Maximum EL estimates:
#> eruptions   waiting 
#>     3.488    70.897 
#> 
#> logL: -1529, logLR: -4.241 
#> Chisq: 8.483, df: 2, Pr(>Chisq): 0.01439
#> EL evaluation: converged 
#> 

data("mtcars")
fit2 <- el_lm(mpg ~ wt, data = mtcars)
summary(fit2)
#> 
#> 	Empirical Likelihood
#> 
#> Model: lm 
#> 
#> Call:
#> el_lm(formula = mpg ~ wt, data = mtcars)
#> 
#> Number of observations: 32 
#> Number of parameters: 2 
#> 
#> Parameter values under the null hypothesis:
#> (Intercept)          wt 
#>       37.29        0.00 
#> 
#> Lagrange multipliers:
#> [1] -109.51   14.62
#> 
#> Maximum EL estimates:
#> (Intercept)          wt 
#>      37.285      -5.344 
#> 
#> logL: -330.4 , logLR: -219.5 
#> Chisq: 439.1, df: 1, Pr(>Chisq): < 2.2e-16
#> Constrained EL: initialization failed 
#> 
#> Coefficients:
#>             Estimate Chisq Pr(>Chisq)    
#> (Intercept)   37.285 443.3     <2e-16 ***
#> wt            -5.344 439.1     <2e-16 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>