
Package index
-
pangolingpangoling-package - pangoling: Access to Large Language Model Predictions
-
causal_next_tokens_pred_tbl() - Generate next tokens after a context and their predictability using a causal transformer model
-
causal_pred_mats() - Generate a list of predictability matrices using a causal transformer model
-
causal_words_pred()causal_tokens_pred_lst()causal_targets_pred() - Compute predictability using a causal transformer model
-
masked_targets_pred() - Get the predictability of a target word (or phrase) given a left and right context
-
masked_tokens_pred_tbl() - Get the possible tokens and their log probabilities for each mask in a sentence
-
causal_config() - Returns the configuration of a causal model
-
causal_preload() - Preloads a causal language model
-
masked_config() - Returns the configuration of a masked model
-
masked_preload() - Preloads a masked language model
-
install_py_pangoling() - Install the Python packages needed for
pangoling
-
installed_py_pangoling() - Check if the required Python dependencies for
pangolingare installed
-
set_cache_folder() - Set cache folder for HuggingFace transformers
-
ntokens() - The number of tokens in a string or vector of strings
-
tokenize_lst() - Tokenize an input
-
transformer_vocab() - Returns the vocabulary of a model
-
perplexity_calc() - Calculates perplexity
-
df_jaeger14 - Self-Paced Reading Dataset on Chinese Relative Clauses
-
df_sent - Example dataset: Two word-by-word sentences