Skip to contents

For a list of viewr objects, run through the pipeline (from relabel axes up through get full trajectories, as desired) via clean_viewr()

Usage

clean_viewr_batch(obj_list, file_announce = FALSE, ...)

Arguments

obj_list

A list of viewr objects (i.e. a list of tibbles that each have attribute pathviewr_steps that includes "viewr")

file_announce

Should the function report each time a file is processed? Default FALSE; if TRUE, a message will appear in the console each time a file has been cleaned successfully.

...

Arguments to be passed in that specify how this function should clean files.

Value

A list of viewr objects (tibble or data.frame with attribute pathviewr_steps that includes "viewr") that have been passed through the corresponding cleaning functions.

Details

viewr objects should be in a list, e.g. the object generated by import_batch().

See clean_viewr() for details of how cleaning steps are handled and/or refer to the corresponding cleaning functions themselves.

See also

Author

Vikram B. Baliga

Examples

## Since we only have one example file of each type provided
## in pathviewr, we will simply import the same example multiple
## times to simulate batch importing. Replace the contents of
## the following list with your own list of files to be imported.

## Make a list of the same example file 3x
import_list <-
  c(rep(
    system.file("extdata", "pathviewr_motive_example_data.csv",
                package = 'pathviewr'),
    3
  ))

## Batch import
motive_batch_imports <-
  import_batch(import_list,
               import_method = "motive",
               import_messaging = TRUE)
#> File 1 imported.
#> File 2 imported.
#> File 3 imported.

## Batch cleaning of these imported files
## via clean_viewr_batch()
motive_batch_cleaned <-
  clean_viewr_batch(
    file_announce = TRUE,
    motive_batch_imports,
    desired_percent = 50,
    max_frame_gap = "autodetect",
    span = 0.95
  )
#> autodetect is an experimental feature -- please report issues.
#> File 1 has been cleaned successfully.
#> autodetect is an experimental feature -- please report issues.
#> File 2 has been cleaned successfully.
#> autodetect is an experimental feature -- please report issues.
#> File 3 has been cleaned successfully.

## Alternatively, use import_and_clean_batch() to
## combine import with cleaning on a batch of files
motive_batch_import_and_clean <-
  import_and_clean_batch(
    import_list,
    import_method = "motive",
    import_messaging = TRUE,
    motive_batch_imports,
    desired_percent = 50,
    max_frame_gap = "autodetect",
    span = 0.95
  )
#> File 1 imported.
#> File 2 imported.
#> File 3 imported.
#> autodetect is an experimental feature -- please report issues.
#> autodetect is an experimental feature -- please report issues.
#> autodetect is an experimental feature -- please report issues.

## Each of these lists of objects can be bound into
## one viewr object (i.e. one tibble) via
## bind_viewr_objects()
motive_bound_one <-
  bind_viewr_objects(motive_batch_cleaned)

motive_bound_two <-
  bind_viewr_objects(motive_batch_import_and_clean)

## Either route results in the same object ultimately:
identical(motive_bound_one, motive_bound_two)
#> [1] TRUE