Skip to contents

For additional vignettes see https://docs.ropensci.org/rnoaa/

Installation

GDAL

You’ll need GDAL (https://gdal.org/) installed first. You may want to use GDAL >= 0.9-1 since that version or later can read TopoJSON format files as well, which aren’t required here, but may be useful. Install GDAL:

Then when you install the R package rgdal (rgeos also requires GDAL), you’ll most likely need to specify where you’re gdal-config file is on your machine, as well as a few other things. I have an OSX Mavericks machine, and this works for me (there’s no binary for Mavericks, so install the source version):

install.packages("https://cran.r-project.org/src/contrib/rgdal_0.9-1.tar.gz", repos = NULL, type="source", configure.args = "--with-gdal-config=/Library/Frameworks/GDAL.framework/Versions/1.10/unix/bin/gdal-config --with-proj-include=/Library/Frameworks/PROJ.framework/unix/include --with-proj-lib=/Library/Frameworks/PROJ.framework/unix/lib")

The rest of the installation should be easy. If not, let us know.

Stable version from CRAN

or development version from GitHub

remotes::install_github("ropensci/rnoaa")

Load rnoaa

NCDC v2 API data

NCDC Authentication

You’ll need an API key to use the NOAA NCDC functions (those starting with ncdc*()) in this package (essentially a password). Go to https://www.ncdc.noaa.gov/cdo-web/token to get one. You can’t use this package without an API key.

Once you obtain a key, there are two ways to use it.

  1. Pass it inline with each function call (somewhat cumbersome)
ncdc(datasetid = 'PRECIP_HLY', locationid = 'ZIP:28801', datatypeid = 'HPCP', startdate = '2013-10-01', enddate = '2013-12-01', limit = 5, token =  "YOUR_TOKEN")
  1. Alternatively, you might find it easier to set this as an option, either by adding this line to the top of a script or somewhere in your .rprofile
options(noaakey = "KEY_EMAILED_TO_YOU")
  1. You can always store in permamently in your .Rprofile file.

Fetch list of city locations in descending order

ncdc_locs(locationcategoryid='CITY', sortfield='name', sortorder='desc')
#> $meta
#> $meta$totalCount
#> [1] 1989
#> 
#> $meta$pageCount
#> [1] 25
#> 
#> $meta$offset
#> [1] 1
#> 
#> 
#> $data
#>       mindate    maxdate                  name datacoverage            id
#> 1  1892-08-01 2021-05-31            Zwolle, NL       1.0000 CITY:NL000012
#> 2  1901-01-01 2021-11-23            Zurich, SZ       1.0000 CITY:SZ000007
#> 3  1957-07-01 2021-11-23         Zonguldak, TU       1.0000 CITY:TU000057
#> 4  1906-01-01 2021-11-23            Zinder, NG       0.9025 CITY:NG000004
#> 5  1973-01-01 2021-11-23        Ziguinchor, SG       1.0000 CITY:SG000004
#> 6  1938-01-01 2021-11-23         Zhytomyra, UP       0.9723 CITY:UP000025
#> 7  1948-03-01 2021-11-23        Zhezkazgan, KZ       0.9302 CITY:KZ000017
#> 8  1951-01-01 2021-11-23         Zhengzhou, CH       1.0000 CITY:CH000045
#> 9  1941-01-01 2021-11-23          Zaragoza, SP       1.0000 CITY:SP000021
#> 10 1936-01-01 2009-06-17      Zaporiyhzhya, UP       1.0000 CITY:UP000024
#> 11 1957-01-01 2021-11-23          Zanzibar, TZ       0.8016 CITY:TZ000019
#> 12 1973-01-01 2021-11-23            Zanjan, IR       0.9105 CITY:IR000020
#> 13 1893-01-01 2021-11-26     Zanesville, OH US       1.0000 CITY:US390029
#> 14 1912-01-01 2021-11-23             Zahle, LE       0.9819 CITY:LE000004
#> 15 1951-01-01 2021-11-23           Zahedan, IR       0.9975 CITY:IR000019
#> 16 1860-12-01 2021-11-23            Zagreb, HR       1.0000 CITY:HR000002
#> 17 1929-07-01 2021-10-09         Zacatecas, MX       1.0000 CITY:MX000036
#> 18 1947-01-01 2021-11-23 Yuzhno-Sakhalinsk, RS       1.0000 CITY:RS000081
#> 19 1893-01-01 2021-11-26           Yuma, AZ US       1.0000 CITY:US040015
#> 20 1942-02-01 2021-11-25   Yucca Valley, CA US       1.0000 CITY:US060048
#> 21 1885-01-01 2021-11-26      Yuba City, CA US       1.0000 CITY:US060047
#> 22 1998-02-01 2021-11-23            Yozgat, TU       0.9993 CITY:TU000056
#> 23 1893-01-01 2021-11-26     Youngstown, OH US       1.0000 CITY:US390028
#> 24 1894-01-01 2021-11-26           York, PA US       1.0000 CITY:US420024
#> 25 1869-01-01 2021-11-26        Yonkers, NY US       1.0000 CITY:US360031
#> 
#> attr(,"class")
#> [1] "ncdc_locs"

Get info on a station by specifying a dataset, locationtype, location, and station

ncdc_stations(datasetid='GHCND', locationid='FIPS:12017', stationid='GHCND:USC00084289')
#> $meta
#> NULL
#> 
#> $data
#>   elevation    mindate    maxdate latitude                  name datacoverage
#> 1      17.7 1899-01-01 2021-11-08 28.80286 INVERNESS 3 SE, FL US            1
#>                  id elevationUnit longitude
#> 1 GHCND:USC00084289        METERS -82.31266
#> 
#> attr(,"class")
#> [1] "ncdc_stations"

Search for data

out <- ncdc(datasetid='NORMAL_DLY', stationid='GHCND:USW00014895', datatypeid='dly-tmax-normal', startdate = '2010-05-01', enddate = '2010-05-10')

See a data.frame

head( out$data )
#> # A tibble: 6 × 5
#>   date                datatype        station           value fl_c 
#>   <chr>               <chr>           <chr>             <int> <chr>
#> 1 2010-05-01T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895   652 S    
#> 2 2010-05-02T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895   655 S    
#> 3 2010-05-03T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895   658 S    
#> 4 2010-05-04T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895   661 S    
#> 5 2010-05-05T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895   663 S    
#> 6 2010-05-06T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895   666 S

Note that the value column has strangely large numbers for temperature measurements. By convention, rnoaa doesn’t do any conversion of values from the APIs and some APIs use seemingly odd units.

You have two options here:

  1. Use the add_units parameter on ncdc to have rnoaa attempt to look up the units. This is a good idea to try first.

  2. Consult the documentation for whiechever dataset you’re accessing. In this case, GHCND has a README (https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt) which indicates TMAX is measured in tenths of degrees Celcius.

See a data.frame with units

As mentioned above, you can use the add_units parameter with ncdc() to ask rnoaa to attempt to look up units for whatever data you ask it to return. Let’s ask rnoaa to add units to some precipitation (PRCP) data:

with_units <- ncdc(datasetid='GHCND', stationid='GHCND:USW00014895', datatypeid='PRCP', startdate = '2010-05-01', enddate = '2010-10-31', limit=500, add_units = TRUE)
head( with_units$data )
#> # A tibble: 6 × 9
#>   date                datatype station      value fl_m  fl_q  fl_so fl_t  units 
#>   <chr>               <chr>    <chr>        <int> <chr> <chr> <chr> <chr> <chr> 
#> 1 2010-05-01T00:00:00 PRCP     GHCND:USW00…     0 "T"   ""    0     2400  mm_te…
#> 2 2010-05-02T00:00:00 PRCP     GHCND:USW00…    30 ""    ""    0     2400  mm_te…
#> 3 2010-05-03T00:00:00 PRCP     GHCND:USW00…    51 ""    ""    0     2400  mm_te…
#> 4 2010-05-04T00:00:00 PRCP     GHCND:USW00…     0 "T"   ""    0     2400  mm_te…
#> 5 2010-05-05T00:00:00 PRCP     GHCND:USW00…    18 ""    ""    0     2400  mm_te…
#> 6 2010-05-06T00:00:00 PRCP     GHCND:USW00…    30 ""    ""    0     2400  mm_te…

From the above output, we can see that the units for PRCP values are “mm_tenths” which means tenths of a millimeter. You won’t always be so lucky and sometimes you will have to look up the documentation on your own.

Plot data, super simple, but it’s a start

out <- ncdc(datasetid='GHCND', stationid='GHCND:USW00014895', datatypeid='PRCP', startdate = '2010-05-01', enddate = '2010-10-31', limit=500)
ncdc_plot(out, breaks="1 month", dateformat="%d/%m")
plot of chunk unnamed-chunk-13
plot of chunk unnamed-chunk-13

Note that PRCP values are in units of tenths of a millimeter, as we found out above.

More plotting

You can pass many outputs from calls to the noaa function in to the ncdc_plot function.

out1 <- ncdc(datasetid='GHCND', stationid='GHCND:USW00014895', datatypeid='PRCP', startdate = '2010-03-01', enddate = '2010-05-31', limit=500)
out2 <- ncdc(datasetid='GHCND', stationid='GHCND:USW00014895', datatypeid='PRCP', startdate = '2010-09-01', enddate = '2010-10-31', limit=500)
ncdc_plot(out1, out2, breaks="45 days")
plot of chunk unnamed-chunk-14
plot of chunk unnamed-chunk-14

Get table of all datasets

ncdc_datasets()
#> $meta
#> $meta$offset
#> [1] 1
#> 
#> $meta$count
#> [1] 11
#> 
#> $meta$limit
#> [1] 25
#> 
#> 
#> $data
#>                     uid    mindate    maxdate                        name
#> 1  gov.noaa.ncdc:C00861 1763-01-01 2021-11-25             Daily Summaries
#> 2  gov.noaa.ncdc:C00946 1763-01-01 2021-11-01 Global Summary of the Month
#> 3  gov.noaa.ncdc:C00947 1763-01-01 2021-01-01  Global Summary of the Year
#> 4  gov.noaa.ncdc:C00345 1991-06-05 2021-11-25    Weather Radar (Level II)
#> 5  gov.noaa.ncdc:C00708 1994-05-20 2021-11-24   Weather Radar (Level III)
#> 6  gov.noaa.ncdc:C00821 2010-01-01 2010-01-01     Normals Annual/Seasonal
#> 7  gov.noaa.ncdc:C00823 2010-01-01 2010-12-31               Normals Daily
#> 8  gov.noaa.ncdc:C00824 2010-01-01 2010-12-31              Normals Hourly
#> 9  gov.noaa.ncdc:C00822 2010-01-01 2010-12-01             Normals Monthly
#> 10 gov.noaa.ncdc:C00505 1970-05-12 2014-01-01     Precipitation 15 Minute
#> 11 gov.noaa.ncdc:C00313 1900-01-01 2014-01-01        Precipitation Hourly
#>    datacoverage         id
#> 1          1.00      GHCND
#> 2          1.00       GSOM
#> 3          1.00       GSOY
#> 4          0.95    NEXRAD2
#> 5          0.95    NEXRAD3
#> 6          1.00 NORMAL_ANN
#> 7          1.00 NORMAL_DLY
#> 8          1.00 NORMAL_HLY
#> 9          1.00 NORMAL_MLY
#> 10         0.25  PRECIP_15
#> 11         1.00 PRECIP_HLY
#> 
#> attr(,"class")
#> [1] "ncdc_datasets"

Get data category data and metadata

ncdc_datacats(locationid = 'CITY:US390029')
#> $meta
#> $meta$totalCount
#> [1] 39
#> 
#> $meta$pageCount
#> [1] 25
#> 
#> $meta$offset
#> [1] 1
#> 
#> 
#> $data
#>                     name            id
#> 1    Annual Agricultural        ANNAGR
#> 2     Annual Degree Days         ANNDD
#> 3   Annual Precipitation       ANNPRCP
#> 4     Annual Temperature       ANNTEMP
#> 5    Autumn Agricultural         AUAGR
#> 6     Autumn Degree Days          AUDD
#> 7   Autumn Precipitation        AUPRCP
#> 8     Autumn Temperature        AUTEMP
#> 9               Computed          COMP
#> 10 Computed Agricultural       COMPAGR
#> 11           Degree Days            DD
#> 12      Dual-Pol Moments DUALPOLMOMENT
#> 13             Echo Tops       ECHOTOP
#> 14      Hydrometeor Type   HYDROMETEOR
#> 15            Miscellany          MISC
#> 16                 Other         OTHER
#> 17               Overlay       OVERLAY
#> 18         Precipitation          PRCP
#> 19          Reflectivity  REFLECTIVITY
#> 20    Sky cover & clouds           SKY
#> 21   Spring Agricultural         SPAGR
#> 22    Spring Degree Days          SPDD
#> 23  Spring Precipitation        SPPRCP
#> 24    Spring Temperature        SPTEMP
#> 25   Summer Agricultural         SUAGR
#> 
#> attr(,"class")
#> [1] "ncdc_datacats"

Tornado data

The function tornadoes() simply gets all the data. So the call takes a while, but once done, is fun to play with.

shp <- tornadoes()
#> Error in tornadoes(): could not find function "tornadoes"
library('sp')
plot(shp)
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'shp' not found

HOMR metadata

In this example, search for metadata for a single station ID

homr(qid = 'COOP:046742')

Argo buoys data

There are a suite of functions for Argo data, a few egs:

# Spatial search - by bounding box
argo_search("coord", box = c(-40, 35, 3, 2))

# Time based search
argo_search("coord", yearmin = 2007, yearmax = 2009)

# Data quality based search
argo_search("coord", pres_qc = "A", temp_qc = "A")

# Search on partial float id number
argo_qwmo(qwmo = 49)

# Get data
argo(dac = "meds", id = 4900881, cycle = 127, dtype = "D")

CO-OPS data

Get daily mean water level data at Fairport, OH (9063053)

coops_search(station_name = 9063053, begin_date = 20150927, end_date = 20150928,
             product = "daily_mean", datum = "stnd", time_zone = "lst")
#> $metadata
#> $metadata$id
#> [1] "9063053"
#> 
#> $metadata$name
#> [1] "Fairport"
#> 
#> $metadata$lat
#> [1] "41.7597"
#> 
#> $metadata$lon
#> [1] "-81.2811"
#> 
#> 
#> $data
#>            t       v   f
#> 1 2015-09-27 174.430 0,0
#> 2 2015-09-28 174.422 0,0

Additional vignettes

For additional vignettes see https://docs.ropensci.org/rnoaa/