Skip to contents
library(slopes)
library(bench)
library(raster)
#> Loading required package: sp

Performance

A benchmark can reveal how many route gradients can be calculated per second:

e = dem_lisbon_raster
r = lisbon_road_network
et = terra::rast(e)
res = bench::mark(check = FALSE,
  slope_raster = slope_raster(r, e),
  slope_terra = slope_raster(r, et)
)
res
#> # A tibble: 2 × 6
#>   expression        min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>   <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 slope_raster   45.8ms   46.5ms      21.4   16.21MB     9.19
#> 2 slope_terra      43ms   44.6ms      22.4    1.96MB     9.61

That is approximately

round(res$`itr/sec` * nrow(r))
#> [1] 5812 6077

routes per second using the raster and terra (the default if installed, using RasterLayer and native SpatRaster objects) packages to extract elevation estimates from the raster datasets, respectively.

The message: use the terra package to read-in DEM data for slope extraction if speed is important.

To go faster, you can chose the simple method to gain some speed at the expense of accuracy:

e = dem_lisbon_raster
r = lisbon_road_network
res = bench::mark(check = FALSE,
  bilinear1 = slope_raster(r, e),
  bilinear2 = slope_raster(r, et),
  simple1 = slope_raster(r, e, method = "simple"),
  simple2 = slope_raster(r, et, method = "simple")
)
res
#> # A tibble: 4 × 6
#>   expression      min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 bilinear1    45.3ms   45.6ms      21.9    5.28MB    21.9 
#> 2 bilinear2    42.8ms   43.9ms      22.8    1.86MB     7.62
#> 3 simple1      36.4ms   36.7ms      26.9    1.97MB     8.08
#> 4 simple2      37.2ms   37.7ms      26.4    1.98MB     7.92
round(res$`itr/sec` * nrow(r))
#> [1] 5937 6191 7303 7150