Skip to contents
library(slopes)
library(bench)
library(raster)
#> Loading required package: sp

Performance

A benchmark can reveal how many route gradients can be calculated per second:

e = dem_lisbon_raster
r = lisbon_road_network
et = terra::rast(e)
res = bench::mark(check = FALSE,
  slope_raster = slope_raster(r, e),
  slope_terra = slope_raster(r, et)
)
res
#> # A tibble: 2 × 6
#>   expression        min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>   <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 slope_raster   45.7ms     46ms      21.4   16.29MB     9.15
#> 2 slope_terra    43.5ms   44.2ms      22.5    1.96MB     9.65

That is approximately

round(res$`itr/sec` * nrow(r))
#> [1] 5789 6103

routes per second using the raster and terra (the default if installed, using RasterLayer and native SpatRaster objects) packages to extract elevation estimates from the raster datasets, respectively.

The message: use the terra package to read-in DEM data for slope extraction if speed is important.

To go faster, you can chose the simple method to gain some speed at the expense of accuracy:

e = dem_lisbon_raster
r = lisbon_road_network
res = bench::mark(check = FALSE,
  bilinear1 = slope_raster(r, e),
  bilinear2 = slope_raster(r, et),
  simple1 = slope_raster(r, e, method = "simple"),
  simple2 = slope_raster(r, et, method = "simple")
)
res
#> # A tibble: 4 × 6
#>   expression      min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 bilinear1    45.8ms   46.6ms      21.1    5.28MB    21.1 
#> 2 bilinear2    44.1ms   44.6ms      22.3    1.86MB     4.97
#> 3 simple1      36.7ms   37.4ms      26.7    1.97MB     8.00
#> 4 simple2      38.9ms   39.2ms      25.2    1.98MB     7.56
round(res$`itr/sec` * nrow(r))
#> [1] 5714 6057 7224 6825