Performance
A benchmark can reveal how many route gradients can be calculated per second:
e = dem_lisbon_raster
r = lisbon_road_network
et = terra::rast(e)
res = bench::mark(check = FALSE,
slope_raster = slope_raster(r, e),
slope_terra = slope_raster(r, et)
)
res
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 slope_raster 45.2ms 46ms 21.1 16.28MB 9.05
#> 2 slope_terra 42.7ms 43.5ms 22.9 1.96MB 9.83
That is approximately
routes per second using the raster
and
terra
(the default if installed, using
RasterLayer
and native SpatRaster
objects)
packages to extract elevation estimates from the raster datasets,
respectively.
The message: use the terra
package to read-in DEM data
for slope extraction if speed is important.
To go faster, you can chose the simple
method to gain
some speed at the expense of accuracy:
e = dem_lisbon_raster
r = lisbon_road_network
res = bench::mark(check = FALSE,
bilinear1 = slope_raster(r, e),
bilinear2 = slope_raster(r, et),
simple1 = slope_raster(r, e, method = "simple"),
simple2 = slope_raster(r, et, method = "simple")
)
res
#> # A tibble: 4 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 bilinear1 45.2ms 45.9ms 21.8 5.28MB 21.8
#> 2 bilinear2 43ms 43.9ms 22.7 1.86MB 7.57
#> 3 simple1 36.1ms 36.5ms 27.1 1.97MB 7.40
#> 4 simple2 37.7ms 38.6ms 25.6 1.98MB 7.69