Batching is important for optimizing the efficiency
of heavily dynamically-branched workflows:
https://books.ropensci.org/targets/dynamic.html#batching.
tar_rep()
replicates a command in strategically sized batches.
tar_rep()
expects unevaluated name
and command
arguments
(e.g. tar_rep(name = sim, command = simulate())
)
whereas tar_rep_raw()
expects an evaluated string for name
and an evaluated expression object for command
(e.g. tar_rep_raw(name = "sim", command = quote(simulate()))
).
Usage
tar_rep(
name,
command,
batches = 1,
reps = 1,
rep_workers = 1,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")
)
tar_rep_raw(
name,
command,
batches = 1,
reps = 1,
rep_workers = 1,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")
)
Arguments
- name
Name of the target.
tar_rep()
expects unevaluatedname
andcommand
arguments (e.g.tar_rep(name = sim, command = simulate())
) whereastar_rep_raw()
expects an evaluated string forname
and an evaluated expression object forcommand
(e.g.tar_rep_raw(name = "sim", command = quote(simulate()))
).- command
R code to run multiple times. Must return a list or data frame because
tar_rep()
will try to append new elements/columnstar_batch
andtar_rep
to the output to denote the batch and rep-within-batch IDs, respectively.tar_rep()
expects unevaluatedname
andcommand
arguments (e.g.tar_rep(name = sim, command = simulate())
) whereastar_rep_raw()
expects an evaluated string forname
and an evaluated expression object forcommand
(e.g.tar_rep_raw(name = "sim", command = quote(simulate()))
).- batches
Number of batches. This is also the number of dynamic branches created during
tar_make()
.- reps
Number of replications in each batch. The total number of replications is
batches * reps
.- rep_workers
Positive integer of length 1, number of local R processes to use to run reps within batches in parallel. If 1, then reps are run sequentially within each batch. If greater than 1, then reps within batch are run in parallel using a PSOCK cluster.
- tidy_eval
Whether to invoke tidy evaluation (e.g. the
!!
operator fromrlang
) as soon as the target is defined (beforetar_make()
). Applies to thecommand
argument.- packages
Character vector of packages to load right before the target runs or the output data is reloaded for downstream targets. Use
tar_option_set()
to set packages globally for all subsequent targets you define.- library
Character vector of library paths to try when loading
packages
.- format
Optional storage format for the target's return value. With the exception of
format = "file"
, each target gets a file in_targets/objects
, and each format is a different way to save and load this file. See the "Storage formats" section for a detailed list of possible data storage formats.- repository
Character of length 1, remote repository for target storage. Choices:
"local"
: file system of the local machine."aws"
: Amazon Web Services (AWS) S3 bucket. Can be configured with a non-AWS S3 bucket using theendpoint
argument oftar_resources_aws()
, but versioning capabilities may be lost in doing so. See the cloud storage section of https://books.ropensci.org/targets/data.html for details for instructions."gcp"
: Google Cloud Platform storage bucket. See the cloud storage section of https://books.ropensci.org/targets/data.html for details for instructions.A character string from
tar_repository_cas()
for content-addressable storage.
Note: if
repository
is not"local"
andformat
is"file"
then the target should create a single output file. That output file is uploaded to the cloud and tracked for changes where it exists in the cloud. The local file is deleted after the target runs.- iteration
Character of length 1, name of the iteration mode of the target. Choices:
"vector"
: branching happens withvectors::vec_slice()
and aggregation happens withvctrs::vec_c()
."list"
, branching happens with[[]]
and aggregation happens withlist()
. In the case of list iteration,tar_read(your_target)
will return a list of lists, where the outer list has one element per batch and each inner list has one element per rep within batch. To un-batch this nested list, calltar_read(your_target, recursive = FALSE)
."group"
:dplyr::group_by()
-like functionality to branch over subsets of a data frame. The target's return value must be a data frame with a specialtar_group
column of consecutive integers from 1 through the number of groups. Each integer designates a group, and a branch is created for each collection of rows in a group. See thetar_group()
function intargets
to see how you can create the specialtar_group
column withdplyr::group_by()
.
- error
Character of length 1, what to do if the target stops and throws an error. Options:
"stop"
: the whole pipeline stops and throws an error."continue"
: the whole pipeline keeps going."null"
: The errored target continues and returnsNULL
. The data hash is deliberately wrong so the target is not up to date for the next run of the pipeline. In addition, as of version 1.8.0.9011, a value ofNULL
is given to upstream dependencies witherror = "null"
if loading fails."abridge"
: any currently running targets keep running, but no new targets launch after that."trim"
: all currently running targets stay running. A queued target is allowed to start if:It is not downstream of the error, and
It is not a sibling branch from the same
tar_target()
call (if the error happened in a dynamic branch).
The idea is to avoid starting any new work that the immediate error impacts.
error = "trim"
is just likeerror = "abridge"
, but it allows potentially healthy regions of the dependency graph to begin running. (Visit https://books.ropensci.org/targets/debugging.html to learn how to debug targets using saved workspaces.)
- memory
Character of length 1, memory strategy. Possible values:
"auto"
: new intargets
version 1.8.0.9011,memory = "auto"
is equivalent tomemory = "transient"
for dynamic branching (a non-nullpattern
argument) andmemory = "persistent"
for targets that do not use dynamic branching."persistent"
: the target stays in memory until the end of the pipeline (unlessstorage
is"worker"
, in which casetargets
unloads the value from memory right after storing it in order to avoid sending copious data over a network)."transient"
: the target gets unloaded after every new target completes. Either way, the target gets automatically loaded into memory whenever another target needs the value.
For cloud-based dynamic files (e.g.
format = "file"
withrepository = "aws"
), thememory
option applies to the temporary local copy of the file:"persistent"
means it remains until the end of the pipeline and is then deleted, and"transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and the latter conserves local storage.- garbage_collection
Logical:
TRUE
to runbase::gc()
just before the target runs,FALSE
to omit garbage collection. In the case of high-performance computing,gc()
runs both locally and on the parallel worker. All this garbage collection is skipped if the actual target is skipped in the pipeline. Non-logical values ofgarbage_collection
are converted toTRUE
orFALSE
usingisTRUE()
. In other words, non-logical values are convertedFALSE
. For example,garbage_collection = 2
is equivalent togarbage_collection = FALSE
.- deployment
Character of length 1. If
deployment
is"main"
, then the target will run on the central controlling R process. Otherwise, ifdeployment
is"worker"
and you set up the pipeline with distributed/parallel computing, then the target runs on a parallel worker. For more on distributed/parallel computing intargets
, please visit https://books.ropensci.org/targets/crew.html.- priority
Numeric of length 1 between 0 and 1. Controls which targets get deployed first when multiple competing targets are ready simultaneously. Targets with priorities closer to 1 get dispatched earlier (and polled earlier in
tar_make_future()
).- resources
Object returned by
tar_resources()
with optional settings for high-performance computing functionality, alternative data storage formats, and other optional capabilities oftargets
. Seetar_resources()
for details.- storage
Character string to control when the output of the target is saved to storage. Only relevant when using
targets
with parallel workers (https://books.ropensci.org/targets/crew.html). Must be one of the following values:"main"
: the target's return value is sent back to the host machine and saved/uploaded locally."worker"
: the worker saves/uploads the value."none"
:targets
makes no attempt to save the result of the target to storage in the location wheretargets
expects it to be. Saving to storage is the responsibility of the user. Use with caution.
- retrieval
Character string to control when the current target loads its dependencies into memory before running. (Here, a "dependency" is another target upstream that the current one depends on.) Only relevant when using
targets
with parallel workers (https://books.ropensci.org/targets/crew.html). Must be one of the following values:"main"
: the target's dependencies are loaded on the host machine and sent to the worker before the target runs."worker"
: the worker loads the target's dependencies."none"
:targets
makes no attempt to load its dependencies. Withretrieval = "none"
, loading dependencies is the responsibility of the user. Use with caution.
- cue
An optional object from
tar_cue()
to customize the rules that decide whether the target is up to date.- description
Character of length 1, a custom free-form human-readable text description of the target. Descriptions appear as target labels in functions like
tar_manifest()
andtar_visnetwork()
, and they let you select subsets of targets for thenames
argument of functions liketar_make()
. For example,tar_manifest(names = tar_described_as(starts_with("survival model")))
lists all the targets whose descriptions start with the character string"survival model"
.
Value
A list of two targets, one upstream and one downstream.
The upstream target returns a numeric index of batch ids,
and the downstream one dynamically maps over the batch ids
to run the command multiple times.
If the command returns a list or data frame, then
the targets from tar_rep()
will try to append new elements/columns
tar_batch
, tar_rep
, and tar_seed
to the output
to denote the batch, rep-within-batch ID, and random number
generator seed, respectively.
tar_read(your_target)
(on the downstream target with the actual work)
will return a list of lists, where the outer list has one element per
batch and each inner list has one element per rep within batch.
To un-batch this nested list, call
tar_read(your_target, recursive = FALSE)
.
Details
tar_rep()
and tar_rep_raw()
each create two targets:
an upstream local stem
with an integer vector of batch ids, and a downstream pattern
that maps over the batch ids. (Thus, each batch is a branch.)
Each batch/branch replicates the command a certain number of times.
If the command returns a list or data frame, then
the targets from tar_rep()
will try to append new elements/columns
tar_batch
, tar_rep
, and tar_seed
to the output
to denote the batch, rep-within-batch index, and rep-specific seed,
respectively.
Both batches and reps within each batch
are aggregated according to the method you specify
in the iteration
argument. If "list"
, reps and batches
are aggregated with list()
. If "vector"
,
then vctrs::vec_c()
. If "group"
, then vctrs::vec_rbind()
.
Replicate-specific seeds
In ordinary pipelines, each target has its own unique deterministic
pseudo-random number generator seed derived from its target name.
In batched replicate, however, each batch is a target with multiple
replicate within that batch. That is why tar_rep()
and friends give each replicate its own unique seed.
Each replicate-specific seed is created
based on the dynamic parent target name,
tar_option_get("seed")
(for targets
version 0.13.5.9000 and above),
batch index, and rep-within-batch index.
The seed is set just before the replicate runs.
Replicate-specific seeds are invariant to batching structure.
In other words,
tar_rep(name = x, command = rnorm(1), batches = 100, reps = 1, ...)
produces the same numerical output as
tar_rep(name = x, command = rnorm(1), batches = 10, reps = 10, ...)
(but with different batch names).
Other target factories with this seed scheme are tar_rep2()
,
tar_map_rep()
, tar_map2_count()
, tar_map2_size()
,
and tar_render_rep()
.
For the tar_map2_*()
functions,
it is possible to manually supply your own seeds
through the command1
argument and then invoke them in your
custom code for command2
(set.seed()
, withr::with_seed
,
or withr::local_seed()
). For tar_render_rep()
,
custom seeds can be supplied to the params
argument
and then invoked in the individual R Markdown reports.
Likewise with tar_quarto_rep()
and the execute_params
argument.
Target objects
Most tarchetypes
functions are target factories,
which means they return target objects
or lists of target objects.
Target objects represent skippable steps of the analysis pipeline
as described at https://books.ropensci.org/targets/.
Please read the walkthrough at
https://books.ropensci.org/targets/walkthrough.html
to understand the role of target objects in analysis pipelines.
For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories explains target factories (functions like this one which generate targets) and the design specification at https://books.ropensci.org/targets-design/ details the structure and composition of target objects.
See also
Other branching:
tar_map2()
,
tar_map2_count()
,
tar_map2_size()
,
tar_map_rep()
,
tar_rep2()
,
tar_rep_map()
,
tar_rep_map_raw()
Examples
if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({
list(
tarchetypes::tar_rep(
x,
data.frame(x = sample.int(1e4, 2)),
batches = 2,
reps = 3
)
)
})
targets::tar_make()
targets::tar_read(x)
targets::tar_script({
list(
tarchetypes::tar_rep_raw(
"x",
quote(data.frame(x = sample.int(1e4, 2))),
batches = 2,
reps = 3
)
)
})
targets::tar_make()
targets::tar_read(x)
})
}