Calibrate multiple probes by calculating detection efficiency and R squared
Source:R/calculate_efficiency.R
calculate_efficiency_bytargetid.Rd
See calibration vignette for example of usage.
Usage
calculate_efficiency_bytargetid(
cq_df,
formula = cq ~ log2(dilution) + biol_rep,
use_prep_types = "+RT"
)
Arguments
- cq_df
a data frame with cq (quantification cycle) data, 1 row per well
Must have columns prep_type, target_id, cq, dilution. Only prep_type=="+RT" columns are used.
- formula
formula to use for log-log regression fit.
Default value assumes multiple biological replicates, cq ~ log2(dilution) + biol_rep.
If only a single Biological Replicate, change to cq ~ log2(dilution). If multiple sample_ids, change to cq ~ log2(dilution) + sample_id.
See ?formula for background and help.
- use_prep_types
prep_type column values to use, default "+RT" for RT-qPCR.
By default, this includes only reverse-transcribed values in the efficiency estimation, so excludes negative controls such as no-template and no-RT.
To skip this filtering step, set use_prep_types=NA.
Examples
# create simple dilution dataset for two target_ids with two biological reps
dilution_tibble <- tibble(target_id = rep(c("T_1",
"T_2"), each = 8),
well_row = rep(c("A",
"B"), each = 8),
well_col = rep(1:8, 2),
well = paste0(well_row, well_col),
dilution = rep(c(1, 0.1, 0.001, 0.0001), 4),
cq = c(1, 3, 4, 6, 1, 3, 5, 7,
4, 5, 6, 7, 3, 7, 8, 9),
biol_rep = rep(c(1, 1, 1, 1, 2, 2, 2, 2), 2),
prep_type = "+RT")
# calculate primer efficiency for multiple targets
#----- use case 1: include difference across replicates in model
dilution_tibble %>%
calculate_efficiency_bytargetid()
#> # A tibble: 2 × 4
#> target_id efficiency efficiency.sd r.squared
#> <chr> <dbl> <dbl> <dbl>
#> 1 T_1 0.376 0.0398 0.948
#> 2 T_2 0.301 0.0722 0.801
#----- use case 2: ignore difference across replicates
dilution_tibble %>%
calculate_efficiency_bytargetid(formula = cq ~ log2(dilution))
#> # A tibble: 2 × 4
#> target_id efficiency efficiency.sd r.squared
#> <chr> <dbl> <dbl> <dbl>
#> 1 T_1 0.376 0.0412 0.933
#> 2 T_2 0.301 0.0819 0.693