Calculate the global Geary's C statistic for model residuals.
ww_global_geary_c() returns the statistic itself, while
ww_global_geary_pvalue() returns the associated p value.
These functions are meant to help assess model predictions, for instance by
identifying if there are clusters of higher residuals than expected. For
statistical testing and inference applications, use
spdep::geary.test() instead.
Usage
ww_global_geary_c(data, ...)
ww_global_geary_c_vec(truth, estimate, wt, na_rm = FALSE, ...)
ww_global_geary_pvalue(data, ...)
ww_global_geary_pvalue_vec(truth, estimate, wt = NULL, na_rm = FALSE, ...)Arguments
- data
A
data.framecontaining the columns specified by thetruthandestimatearguments.- ...
Additional arguments passed to
spdep::geary()(forww_global_geary_c()) orspdep::geary.test()(forww_global_geary_pvalue()).- truth
The column identifier for the true results (that is
numeric). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()functions, anumericvector.- estimate
The column identifier for the predicted results (that is also
numeric). As withtruththis can be specified different ways but the primary method is to use an unquoted variable name. For_vec()functions, anumericvector.- wt
A
listwobject, for instance as created withww_build_weights(). For data.frame input, may also be a function that takesdataand returns alistwobject.- na_rm
A
logicalvalue indicating whetherNAvalues should be stripped before the computation proceeds.
Value
A tibble with columns .metric, .estimator, and .estimate and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the
number of groups.
For _vec() functions, a single value (or NA).
Details
These functions can be used for geographic or projected coordinate reference systems and expect 2D data.
References
Geary, R. C. (1954). "The Contiguity Ratio and Statistical Mapping". The Incorporated Statistician. 5 (3): 115–145. doi:10.2307/2986645.
Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, p. 17.
See also
Other autocorrelation metrics:
ww_global_moran_i(),
ww_local_geary_c(),
ww_local_getis_ord_g(),
ww_local_moran_i()
Other yardstick metrics:
ww_agreement_coefficient(),
ww_global_moran_i(),
ww_local_geary_c(),
ww_local_getis_ord_g(),
ww_local_moran_i(),
ww_willmott_d()
Examples
guerry_model <- guerry
guerry_lm <- lm(Crm_prs ~ Litercy, guerry_model)
guerry_model$predictions <- predict(guerry_lm, guerry_model)
ww_global_geary_c(guerry_model, Crm_prs, predictions)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 global_geary_c standard 0.565
ww_global_geary_pvalue(guerry_model, Crm_prs, predictions)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 global_geary_pvalue standard 7.55e-10
wt <- ww_build_weights(guerry_model)
ww_global_geary_c_vec(
guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt
)
#> [1] 0.5654044
ww_global_geary_pvalue_vec(
guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt
)
#> [1] 7.548865e-10
